收藏 分享(赏)

SAMSUNG的Minitab教程.ppt

上传人:暖洋洋 文档编号:1608708 上传时间:2018-08-11 格式:PPT 页数:98 大小:1.12MB
下载 相关 举报
SAMSUNG的Minitab教程.ppt_第1页
第1页 / 共98页
SAMSUNG的Minitab教程.ppt_第2页
第2页 / 共98页
SAMSUNG的Minitab教程.ppt_第3页
第3页 / 共98页
SAMSUNG的Minitab教程.ppt_第4页
第4页 / 共98页
SAMSUNG的Minitab教程.ppt_第5页
第5页 / 共98页
点击查看更多>>
资源描述

1、1. Minitab 的操作,MINITAB = Mini + Tabulator =小型 + 计算机,介绍 于1972年,美国宾夕法尼亚 州立大学用来作统计分析、教育用而开发,目前已出版 Window 用版本 Vesion12.2,并且已在工学、社会学等所有领域被广泛使用。特别是与Six-sigma关联,在GE、AlliedSignal等公司已作为基本的程序而使用。 优点 以菜单的方式构成,所以无需学习高难的命令文,只需拥有基本的统计知识便可使用。图表支持良好,特别是与Six-sigma有关联的部分陆续地在完善之中。,Minitab,什么是 Minitab ?,一般统计,- 基础统计 -回归

2、分析 - 分散分析 - 多变量分析 - 非母数分析 - TABLE(行列) - 探索性 资料(数据)分析,品质管理,- 品质管理工具 - 测定系统分析 - 计量值数据分析 - 计数值数据分析 - 管理图分析 - 工程能力分析,信赖性 及 数据分析,- 分布分析 - 数据的回归分析 - 受益分析,实验计划,- 要因 实验计划 - 反应表面 实验计划 - 混合 实验计划 - Robust 实验计划,Minitab,什么是 Minitab ?,Minitab,Minitab 操作,Minitab 初始画面,方法 2. 利用 Minitab 图标 运行的方法,把 Minitab安装到电脑时,开始菜单

3、及 Minitab 公文包里生成Minitab的 运行图标。运行Minitab的方法有利用开始菜单及选择运行图标两种。,方法 1. 利用开始菜单 运行 Minitab 的方法,Session window:直接输入 Minitab 的命令或显示类似统计表的文本型结果文件的窗口 WorKsheets:用于直接输入数据或可以修改的窗口,具有类似 Excel中的 spread sheet功能 Info窗:简要显示已使用的变量信息的窗口 History窗:储存已使用过的所有命令,并帮助已使用过的命令可重复使用Graph窗: 显示各种统计图表,同时可以打开15个窗口,Minitab,Minitab 画面

4、 构成,File : 有关文件管理所需的副菜单的构成 Edit : 编辑 Worksheet data , 外部 data 的 link 及 command link editor 副菜单 Manip : Worksheet data 的 Split、Sort、Rank、Delete、Stack/Unstack 等副菜单 Calc : 利用内部函数的数据计算及利用分布函数的数据生成 Stat : 是分析统计资料的副菜单,由基础统计、回归分析、分散分析、品质管理、时针序列分析、离散资料分析、非母数统计分析等构成 Graph : 为编辑 Graph的Graph Layout, Chart副菜单及文

5、字Graph构成 Editor : 不使用菜单,使用命令直接作业及Clipboard setting等副菜单 Window : 由控制 Window 画面构成的副菜单及 管理 Graph 画面的副菜单构成,Minitab,Minitab 菜单 构成,打开 新建 : File - New(project, worksheet) 打开保存的 Project : File - Open project 打开保存的 Worksheet : File - Open Worksheet 打开保存的 Graph : File - Open Graph 用ODBC打开 : File - Quary Datab

6、ase 打开TXT : File - Others file - Import special txt保存 保存为当前文件名 : File - Save(project, worksheet) 另存为 : File - Save as(project, worksheet) TXT保存: File - Other file - Export special txt 注) Open Graph 下方的 Save as 为根据选择的窗口可更改保存内容。打印 打印当前选择 window : File - Print,练习) 把 当前的 Worksheet 保存为 Temp.mtw, 并关闭后重新打开

7、,Minitab,Minitab 菜单(File),恢复已删除资料,清除 Cell(s) 的数据,删除 Cell(s) 的数据 下端的 cell 移动,复制 Cell(s),粘贴 Cell(s),LinK粘贴,Link 管理,选择所有 cell,编辑最后操作的对话框,打开命令编辑器,一般选项,用鼠标拖动工作窗口 按鼠标的右键会出现 pop up menu通过此项可编辑 把 Col/Row 的全部作为工作的对象时,选择上端/左侧。,指定变量名 : 在 C1(Col名) 下端的 cell 上输入变量名。 输入 Data : 把数据和文字输入到下端的 cell 上 但,要是先输入数值把变量属性变更为

8、数值变量后不能输入文字。 删除 Data : 把相关 cell 用鼠标 drag 后按 Del 键相关 cell 的内容被删除掉,并且下端的 cell 向上移动。,练习)在 AUTO.MTW上 1) 删除 4,5 Row后把 C4, C5的 DATA 变更为 2342) 把 C2 Col 移动到 C53) 把 C4 Column Size 变更为 12,Minitab,Minitab 菜单(Edit),从活动 Worksheet 中复制数据,制作 subset Worksheet。,把活动 Worksheet 分成两个以上新的 Worksheet,把一列以上的数据移到多个列上,把多个列上的数据

9、合成一个列,交换行和列的位置,对齐排列数据,数据上注明序位,删除特定列的行,把多个列的文字数据合并为一个列,数据按变换条件交换,变更 Data的属性,把数据在Session窗口里输出,把多个 Worksheet 合并为一个 Worksheet,删除行、常数、行列,把列上内容复制到其它列上,Minitab,Minitab 菜单(Manip),练习) 把 EXH_AOV.MTW 的 Durability 和 Carpet 保存在新的 Worksheet 后,(1) 把 Durability 为 Unstack (2) 用上面 Unstack 的内容 把 C7的 data保存到 C8 Subscri

10、pt。练习) 在 AUTO.MTW中,(1) Age 按 No.M 的顺序排列。(2) 按 Yes.M 的顺序排列的 No.F 保存到 C11。,Minitab,习题,把多数的 col 使用函数计算后,保存到新的 col 上,把1个 col 的统计值保存到新的 col 上,用1个以上的 col 计算统计值后,保存到新的 col 上,变换为标准化资料,把数据属性变更为数值属性,把数据属性变更为文字属性,生成 Pattern 数据,把 X、Y、Z 的值用 3D 图象方式组合后生成 Mesh 数据,生成在回归分析中要使用的指示变量,指定 Random 数据的基准点,生成符合分布函数的 Random

11、数据,生成符合分布函数的概率,并用数据保存,行列,Minitab,Minitab 菜单(Calc),练习) 把 EXH_AOV.MTW 的 Durability 和 Carpet保存到新的 Worksheet 后(1) 把 Durability 和 Carpet 相加的值保存到 Dura-Carpet 上。(2) 把 Durability-Carpet保存到 Dura-Carpet 上。练习) 把 EXH_AOV.MTW 的 Durability 和 Carpet保存到新的 Worksheet 后(1) 求 Durability 的 基础统计值。 (2) Durability的Range保存到

12、 C5。练习) 把 EXH_AOV.MTW 的 Durability 和 Carpet保存到新的 Worksheet 后(1) 把 Durability 正态化。(2) 把 Durability 标准化为3和4之间的数据。练习) 生成 1 15 的奇数,每个数二回,全体集合反复三回的数据。练习) 把 Red Blue White Black 生成各值是二回,全体反复二回的数据。 练习) 生成从 1996.04.017.30之间按一周间隔形成的数据。练习) 生成 1996年 4月 1日、97年 7月 30日、98年 12月 25日为各二回,全体为三回形成的数据。练习) 在平均 300, 标准偏差

13、5的正态分布当中抽出 40个 sample 保存到 C5上。,Minitab,习题,Minitab,Minitab 菜单(Window),window : 集合了把 Minitab的所有 window 调节的命令和总体管理的 Graph, Worksheet的命令等, 全面性 Window 的运营命令。,指定把各个 window 都显示, 或者用小图标来显示把 Tool bar 与 Status bar 隐藏或显示使总括 Graph window 的 window活性化 使管理 Worksheet 的 window活性化 活性 window 用 Vmark 表示,用 Vmark标记打开 win

14、dow,2. 基础统计,基础统计量输出,基础统计量保存,对母平均的推定及检定,对母比率的推定及检定,相关分析,公分散分析,正态性检定,Minitab,基础统计,两个母集团的分散的同一性检定,资料应为连续性的列资料, 同时应为数值资料。 能输出图表。,Variables : 选择需要分析的 Col(变量) By variable : 使用集团(Gvoup)变量计算基础统计量,- N : data 数值 - Mean : 平均 - Median : 中央值 - TrMean : 调整平均 - StDev : 标准偏差 - SE Mean : Standard Erro of Mean - Mini

15、mum :最小值 - Maximum : 最大值 - Q1 : 1/4数 - Q3 : 3/4数,Minitab,基础统计量 (Display Descriptive Statistics), Histogram of data : 制作 Histgram Histogram of data with normal curve : 制作Histogram和正态分布曲线 Dotplot of data : 制作 Dotplot Boxplot of data : 制作 Boxplot Graphical summary : 把统计值用Graph输出,Normality Test : 正态性检定

16、A-Squared : 越接近零时判断为接近正态 P-Value : 比留意水准大时为正态性,Minitab,基础统计量 (Display Descriptive Statistics),计算统计量并保存在当前的 Worksheet 在选择两个以上的 Col 时,变量名区分为 1,2。 当指定 By variable时,随着相关 Variable的种类按 Row 方向保存。,- First quartile:1/4数 - Third quartile : 3/4数 - Interquartile range : Q3-Q1 - Skewness : 歪度分布的对称性 ,越接近0 越满足对称性

17、- Kurtosis : 添度分布的尖的程度为0时正态分布, 负数为完满, 正数时比正态分布尖 - MSSD :把前后数据差的乘方除以2- N nonmissing :填满的Col数N missing : 空 Col 数Cumulative N : Col的DATA数 - Percent : 集团占有率 - Cum percent : 累积占有率,Minitab,保存基础统计量 (Store Descriptive Statistics),- 留意水准 : 犯第一种错误的最大概率 - P-Value : 犯一种错误的概率的推定值 - 驳回领域 : 驳回假设的部分领域 - 两侧检定 : 驳回领域

18、存在于两端的检定 - 单侧检定 : 驳回领域存在于分布一端时的检定,Minitab,活用 Minitab 的假设检定,知道标准偏差时的母平均推定和检定 检定母平均是否已知道的特定值,Variables : 选定要分析的 Col Confidence interval :指定计算信赖区间的信赖度 Test mean : 检定对象值(检定时指定) Alternative : 设定对立假设 Sigma : 输入标准偏差 p 值比留意水准小时驳回归属假设 mu : 归属假设, mu not : 对立假设,结果解释 : p值比留意水准小故驳回归属假设,即母平均不等于5。,Test mean 指定的情况,

19、Minitab,1-Sample Z,EXH_STAT.MTW,One-Sample Z: Values Test of mu = 5 vs mu not = 5 The assumed sigma = 0.2 Variable N Mean StDev SE Mean Values 9 4.7889 0.2472 0.0667 Variable 95.0% CI Z P Values ( 4.6582, 4.9196) -3.17 0.002,结果解释 : 信赖区间为最小 4.6582,最大4.9196(信赖度为 95%时),图像对 Test 与 Confidence interval 的输

20、出 不同。Test 时 Ho值追加表示。,Minitab,1-Sample Z,不知标准偏差时母平均的推定和检定,Variables : 指定要分析的 Col Confidence interval : 指定计算信赖区间的信赖度 Test mean :指定检定时对象值 Alternative : 设定对立假设StDev : 标准偏差 SE Mean : 平均误差 CI : 信赖区间 mu : 归属假设, mu not : 对立假设 P值比留意水准小时驳回Ho,即p值指脱离的概率。,结果解释 : p值小于5%留意水准,故驳回归属假设,即平均不等于5,Test mean 指定的情况,Minitab

21、,1-Sample t,EXH_STAT.MTW,不知标准偏差时两个母平均差的推定和检定,Samples in one column(stack形态) : 在1Col中比较两个集团 Sample in different columns(unstack形态)- First :选择第一个 Col - Second : 选择第二个 Col Alternative : 设定对立假设 Confidence level :设定信赖水准 Assume equal variance :假设两个集团的母分散一致,结果解释 : p值大于 5% 有益水准,故选择归属假设,即两个母平均在95% 信赖区间无差异,Mi

22、nitab,2-Sample t,Two-Sample T-Test and CI: BTU.In, Damper Two-sample T for BTU.In Damper N Mean StDev SE Mean 1 40 9.91 3.02 0.48 2 50 10.14 2.77 0.39 Difference = mu (1) - mu (2) Estimate for difference: -0.235 95% CI for difference: (-1.464, 0.993) T-Test of difference = 0 (vs not =): T-Value = -0

23、.38 P-Value = 0.704 DF = 80,Furnace.mtw,有关对应的两个母集团的母平均差的推定和检定,First sample : 选择第一个 data Col Second sample : 选择第二个 data Col - 1 Col 与 2 Col 的资料数应相同 Confidence level : 输入信赖度 Test mean : 输入对应差的检定平均值 Alternative : 设定对立假设,结果解释 : p值小于留意水准 5%, 故驳回归属假设,即两个母平均间有差,EXH_STAT.MTW,Minitab,Paired t,母不良率的推定及检定,Samp

24、les in columns :只限两种文字或者数字 Summarized data- Number of trials : 全体试行次数- Number of successes : 成功(不良)次数 Confidence level : 信赖度 Test proportion : 检定不良率 Alternative :设定对立假设 Use test and interval based on normal distribution : 决定是否按正态分布近似计算,结果解释:p值比留意水准 5%小,故驳回归属假设,Minitab,1-Proportion(单一母集团母比率的检.推定),两个母

25、不良率差的推定及检定,Summarized data- Number of trials : 全体试行次数- Number of successes : 成功(不良)次数 Confidence level : 信赖度 Test proportion : 检定不良率 Alternative : 设定对立假设 Use test and interval based on normal distribution : 是否按正态分布近似计算,结果解释:p值比留意水准5%大,故选择归属假设,即两个母集团不良率无差异,Minitab,2-Proportion(两个母集团母比率的检.推定),Minitab,

26、2Variances(两个母集团分散的同一性检定),EXH_STAT.MTW,两个母集团的分散的同一性检定,在做分散的同一性检定之前 ,有必要先做正态性数据检定。随正态分布时F-Test 结果,不随正态分布时看Levenes Test结果再解释,结果解释:p值比有益水准 5%大, 故不能判断两个母集团的分散不同。 ( 相同 ),命名两个变量间关系的方法,Variables : 要分析的 Col Display p-value : 输出p值 Store matrix :保存为 matrix,结果解释:p值比留意水准 5%小,故驳回归属假设, 即各变量之间有关系,GRADES.MTW,Minita

27、b,Correlation(相关分析),公分散为像相关分析似的表示两个变量间关系的统计量,- Verbal与 Math 的标本公分散为 1333.9704 - Verbal与 GPA 的标本公分散为 13.6995 - GPA与 Math 的标本公分散为 7.4790,Minitab,Covariance(公分散),GRADES.MTW,检定资料的分布形态是否随正态分布的分析法 归属假设 : 数据是随正态分布 对立假设 : 数据是不随正态分布,Variable : 设定需正态性检定的 Col(变量) Reference probabilities : 输入概率值 Tests for Norma

28、lity : 三个方法中选择一种,结果分析:首先若资料与图象中的 直线一致,可认为按正态分布。因 P-value为0.022比留意水准小, 故驳回归属假设,即不随正态分布,Cranksh.mtw,Minitab,Normality Test(正态性检定),3. 回归分析,为了模型化及调查反应变量与一个以上的独立变量之间关系的分析,Least square regression : 反应变量为连续性资料时 Regression:利用最小乘方法,实施单一回归或多重回归 Stepwise Regression:为了找出最合适的说明变量模型进行追加或删除变量而分析 Best Subsets Regre

29、ssion : 利用最大 R-square 基准来分析最大 Subset 回归 Fitted Line Plot:用一个预测变量的线型或多次项进行回归分析 Residual Plot : 为残差分析的 Plot作成Logistic square regression:反应变量为范筹型资料时 Binary Logistic Regression:利用二项反应变量的回归分析(2个范筹时) Ordinal Logistic Regression:利用顺序型反应变量的回归分析(3个以上范筹时) Nominal Logistic Regression:利用名目型反应变量的 回归分析(3个以上范筹时),M

30、initab,回归分析基础,Minitab,Regression,在两个以上变量的关系上建立数学函数的方法,Response : 选择种属变量(结果值) - Score 2Predictors : 选择独立变量(输入值) - Score 1,EXH_REGR.MTW,Options.,Weight:为加重回归指定有加重值的 Col Fit intercept:决定在模型中是否除去绝对项 Display- Variance inflation factors:以多重空线型判别(VIF)影响值,指定VIF值输出与否-Durbin-Watson statistic :指定检定残差自己相关Durbin

31、-Watson统计量输出与否 Lack of Fit Tests-Pure error:指定履行适合性检定时纯误差项的输出与否-Data subsetting:指定把说明变量细分而提供类似反复效果的算法适用与否 Prediction intervals for new observation:推定回归式后,按说明变量的值推定y值 Storage-Fits:指定是否保存推定的y-Confidence limits:指定是否保存推定y的信赖水准的信赖区间-SDs of fits:指定是否保存y的标准偏差-Predicction limits:指定是否保存y的预测界限,Minitab,Regress

32、ion,Results.,在 Session 窗不显示任何结果时,显示基本的回归分析结果时,显示基础统计量时,显示追加统计量时,Graphs.,Residuals for Plots:残差图象中显示的残差种类选择-Regular:在资料的原来测度内利用残差时-Standardized:利用标准残差时-Deleted:利用 Studentized残差时 Residual Plots-Histogram of residual:画残差的 Histogram 时-Normal plot of residual : 画残差的正态概率图时-Residuals versus fits:想看残差的适合性时-

33、Residuals versus order:关于残差对比资料的顺序-Residuals versus the variables:残差与变量之间的关系,Minitab,Regression,Minitab,Regression,分析结果,回归方程式为 SCORE2=1.12+0.218SCORE1 P值比留意水准小,故驳回归属 假设。即两个变量的回归系数 不是 0。对资料的说明程度(决定系数)为 95.7%,因第 9个数据是非正常 数据,故需要进一步观察。新数据的信赖区间为 (2.7614, 3.0439), 预测区间为 (2.5697, 3.2356)。,Minitab,Stepwise,

34、说明变量数量多时,添加或减少变量而选别适当的变量集合为目的所有可能的回归 : 当有k个变量时,调查从一个也不包含的模型至包含 k个的所有模型 前进选择法 : 在影响反应变量的 k个说明变量中选择最大影响的变量,并判断为再无其它重要变量时,停止变量的选择后进选择法 : 在影响反应变量的 k个说明变量中除去影响小的变量,并判断为再无可除变量时,停止变量的除去阶段别回归方法 :在前进选择法里加后进选择法的方法,Minitab,Stepwise,Response:输入反应变量(Pulse2) Predictors:输入说明变量(Pulse1 Ran-Weight) Predictors to incl

35、ude in every model:指定先包含的变量,选择 Forward selection后指定留意水准 留意水准:把预测变量追加到回归模型的基准(p值小于留意水准时追加),PULSE.MTW,Minitab,Stepwise,显示进入模型的预测变量的最佳程度(若是2,则显示 2个预测变量) 输入要进行几次操作 回归模型里要追加常数项时,Stepwise Regression: Pulse2 versus Pulse1, Ran, Weight Forward selection. Alpha-to-Enter: 0.1Response is Pulse2 on 3 predictors

36、, with N = 92Step 1 2 3 Constant 10.28 44.48 70.85 Pulse1 0.957 0.912 0.851 T-Value 7.42 9.74 9.27 P-Value 0.000 0.000 0.000Ran -19.1 -20.6 T-Value -9.05 -9.93 P-Value 0.000 0.000Weight -0.134 T-Value -3.08 P-Value 0.003S 13.5 9.82 9.39 R-Sq 37.97 67.71 70.85 R-Sq(adj) 37.28 66.98 69.85 C-p 99.3 11.

37、5 4.0best alt. Variable Ran Weight T-Value -6.70 -0.54 P-Value 0.000 0.591 Variable Weight T-Value -1.62 P-Value 0.108,Minitab,Best Subsets,在分析者所希望的说明变量中找出最佳模型的分析,Response:指定反应变量 Free predictors:指定在模型里包含可能性的 变量 Predictors in all models:指定必须包含在模型中的变量,包含在模型的至少变量数和最大变量数在说明变量数为相同的组合中,指定 最高说明结果的几个输出与否,EX

38、H_REGR.MTW,结果解释,在模型选择上有根据的统计量 (R-square, adj-R, Cp) Vars:包含在各模型的说明变量数。以下是如前所定的5个说明变量中包含 2个至4个的模型中按R-square高顺序 所表示的。另在包含2个、3个、4个说明变量的模型中,每各变量个数输出3个。,Minitab,Best Subsets,履行单一回归步骤, 绘出回归图 在线型回归及多项回归中有用的方法, 即一个变量对应一个反应值时。,Options.,Response:指定反应变量 Predictor:指定说明变量(仅一个)Type of Regression Model:指定回归Model (

39、1,2,3次方程式),Transformations:反应变量与说明变量取10为底的 LogDisplay Option:表示信赖区间及预测区间,Minitab,Fitted Line Plot,Minitab,Fitted Line Plot,结果解释,显示2次项模型比直线模型更为适合,残差 plot 是为回归分析诊断而使用 回归分析时, 若保存了残差和推定值(Fits),则利用 Residual Plot 步骤绘出残差图形。,进行残差分析之前应先保存残差和适合值Stat Regression Storage : 把 Fits与 Residual check,Residuals : 指定残差

40、 Fits : 指定反应变量的推定值,Minitab,Residual Plots,Minitab,Residual Plots,显示为检查残差是否近似于正态分布的正态概率图, 接近直线时为良好。,用类似于正态概率图的用途显示全面的残差 形态的图象,正态分布形态时为良好,残差对适合值的图象是显示越小的预测值 更为适合,当反应变量不是连续性的二分型(0,1)资料时的回归分析,Response:指定反应变量 Frequency:输入频率数 存在成功与试行次数, 成功与失败, 失败与试行次数形态的反应变量时,各自输入。Model:指定说明变量 Factors:在说明变量中指定离散型变量,Graph.

41、,指定为回归模型诊断的各种图象,EXH_REGR.MTW,Minitab,Binary Logistic Regression,Results.,通过图象诊断过程中显示不适合模型的值有2个。 在图象上按鼠标右键则出现 Play菜单,并通过 Brush确认是第31号值与第66号值,Minitab,Binary Logistic Regression,Binary Logistic Regression Link Function: Logit Response Information Variable Value Count RestingP Low 70 (Event)High 22Total

42、 92 Factor Information Factor Levels Values Smokes 2 No Yes Logistic Regression TableOdds 95% CI Predictor Coef StDev Z P Ratio Lower Upper Constant -1.987 1.679 -1.18 0.237 Smokes Yes -1.1930 0.5530 -2.16 0.031 0.30 0.10 0.90 Weight 0.02502 0.01226 2.04 0.041 1.03 1.00 1.05 Log-Likelihood = -46.820

43、 Test that all slopes are zero: G = 7.574, DF = 2, P-Value = 0.023 Goodness-of-Fit Tests Method Chi-Square DF P Pearson 40.848 47 0.724 Deviance 51.201 47 0.312 Hosmer-Lemeshow 4.745 8 0.784 Brown: General Alternative 0.905 2 0.636 Symmetric Alternative 0.463 1 0.496Table of Observed and Expected Fr

44、equencies: (See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic)Group Value 1 2 3 4 5 6 7 8 9 10 Total Low Obs 4 6 6 8 8 6 8 12 10 2 70Exp 4.4 6.4 6.3 6.6 6.9 7.2 8.3 12.9 9.1 1.9 HighObs 5 4 3 1 1 3 2 3 0 0 22Exp 4.6 3.6 2.7 2.4 2.1 1.8 1.7 2.1 0.9 0.1 Total 9 10 9 9 9 9 10 15 10 2 92Meas

45、ures of Association: (Between the Response Variable and Predicted Probabilities)Pairs Number Percent Summary Measures Concordant 1045 67.9% Somers D 0.38 Discordant 461 29.9% Goodman-Kruskal Gamma 0.39 Ties 34 2.2% Kendalls Tau-a 0.14 Total 1540 100.0%,结果解释在Logistic回归 Table中 Smoke与 Weight 在留意水准 5% 以

46、内有意义。 并且 p值为 0.023,故判断为至少 一个不是0。实施适合度判定,如有p值小于 0.05则适合为不恰当的, 但在此显示适合。在Measures of Association 上 Pairs 部分是一致的结果, Summary Measures表示预测力的 尺度。 (越接近1为越好的预测力),Minitab,Binary Logistic Regression,Minitab,Ordinal Logistic Regression,反应变量按顺序型显示的logistic回归模型,Response:指定反应变量 Frequency:输入频率数 存在成功与试行次数, 成功与失败, 失败

47、与试行次数形态的反应变量时,各自输入。Model:指定说明变量 Factors:在说明变量中指定离散型变量,EXH_REGR.MTW,Regionr 的 p-value=0.685 比留意水准 0.05大,故没有影响。 在这模型中删除 Region 后, 再进行 分析为好。,Minitab,Ordinal Logistic Regression,反应变量为名目型(性别, 邮编, 学号等) 资料构成的 logistic 回归模型。,Response:指定反应变量 Frequency:输入频率数 存在成功与试行次数, 成功与失败, 失败与试行次数形态的反应变量时各自输入。Model:指定说明变量 Factors:在说明变量中指定离散型变量,EXH_REGR.MTW,Minitab,Nominal Logistic Regression,4. 分散分析,Minitab,分散分析基础,寻找说明变量与反应变量关系式的方法论,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 专业基础教材

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报