1、- -人教版小学六年级下册第十二册数学全册教案第一单元百分数(二)1百分数的应用(二)课题一:利息教学内容:教科书第 12 页及“做一做”中的题目,练习一的第 1、2 题。教学目的:使学生了解有关利息的初步知识,知道“本金” 、 “利息” 、 “利率”的含意,会利用利息的计算公式进行一些有关利息的简单计算。教具准备:将例题写在小黑板上,活期储蓄、定期储蓄的存款凭条和取款凭条。教学过程:一、导入教师提问:“如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:“为什么要把钱存入银行呢?”多让几个学生发表意见。教师肯定学生的回答,再指出:把暂时
2、不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。“你们知道利息是怎样计算的吗?”教师:今天我们就来学习一些有关利息的知识。板书课题:“利息”二、新课出示例题:小丽 1998 年 1 月 1 日把 100 元钱存入银行,存定期一年。到 1999 年 1 月 1 日,小丽不仅可以取回存入的 100 元,还可以得到银行多付给的 567 元,共 10567 元。先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等
3、方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期年” ,即小丽在银行存的 100 元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。- -教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入 100 元,也就是说她的本金是 100 元。板书:“存入银行的钱叫做本金”存款到期时,小丽到银行取回 10567 元,银行多付给小丽 567 元,这是 100 元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”这 567 元的利息是根据什么
4、给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是 567,也就是说如果存 100 元,在银行存一年可得 100 元的 567的利息,即 567 元的利息,再加上本金 100 元共 10567 元。根据国家经济的发展变化,银行存款的利率有时会有所调整。1997 年 10 月中国工商银行公布的定期整存整取一年期的年利率是 567,二年期的年利率是 594三年期的年利率是 621。五年期的年利率是 666。按照上面的利率,如果小丽存 300 元钱定期存款二年,到期时她应得利息多少元
5、?提问:“二年期的定期整存整取的年利率是 594是什么意思?”(到期取款时每 100 元可得 594 元的利息。)“小丽的本金是 300 元,到期时她每一年应得利息多少元?”(300 元的 594。)学生口述,教师板书:300594。“二年应得利息多少元?”学生口述,教师接着板书:2小丽的存款到期时可以得到的利息是 3564 元。“想一想,存款的利息应该怎样计算呢?”先让学生说一说,教师再板书:利息本金利率时间“小丽的存款到期时,她可以取出本金和利息一共多少元?”(33564 元。)如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。三、巩固练习做第 2 页“做一做”中的题目和练习
6、一的第 2 题。先让学生独立做,然后再共同订正。订正练习一的第 2 题时,可以先让学生说一说:活期储蓄每月的利率是 0。1425,表示什么意思?再引导学生分步说出:280 元每月可得利息多少元?6 个月的利息是多少元?本金和利息一共多少元?四、作业练习一的第 1 题。- -课题二:利息的练习课教学内容:教科书练习一的第 36 题。教学目的:使学生进一步了解利息的有关知识,掌握利息的简单计算。教具准备:将下面的复习题写在小黑板上。教学过程一、复习教师:上一节课我们学习了储蓄的一些初步知识,知道什么是本金,什么是利息和利率,还学习了怎样计算利息。下面我们一起看一道复习题。复习题:李力把 120 元
7、钱存入银行,存定期 3 年,年利率是 621。到期时李力可得利息多少元?本金和利息一共是多少元?“李力存款的本金是多少元?”学生说出 120 元后,教师指出:存人银行的钱就是本金。“李力的存款在银行存了三年到期后,他不仅可以取回本金 120 元,还可以得到银行多付给他的一些钱这些钱叫什么?”学生回答利息后,教师指出:取款时银行多付的钱叫做利息。“银行在计算利息时是根据什么计算的?”学生回答利率后,教师指出:银行付给的利息是根据利率算出的。“题目中年利率是 6.21是什么意思?”学生回答后,教师指出:存款到期后,每年每 100 元可得利息 621 元。“李力的存款到期时,他可以得利息多少元?是怎
8、样计算的?”学生回答后,教师板书:利息=本金利率时间 1206213 2236(元)“本金和利率一共多少钱?”让学生列式计算。教师板书:120 十 223614236(元)教师:由此可以看出参加储蓄,不仅可以支援国家建设,对自己也有好处。我们要把暂时不用的钱存入银行。二、课堂练习做练习一的第 3、4、6 题。学生先独立做,教师注意了解学生做题情况,帮助有困难的学生。1订正第 3 题时,教师可以提问:你知道国家建设债券是什么吗?学生发表意见后,教师可以简要地向学生说明:国家建设债券是国家为了发展国- -民经济建设,发行的一种证券。这种债券跟定期存款一样也是有时间期限和利率的。计算债券的利息的方法
9、和储蓄存款利息的算法是一样的。再让学生说一说是怎样做的,教师板书算式:15007113 十 15002订正第 4 题时,可以提问:赵英去年 11 月 1 日存入银行 800 元钱,定期 2 年。到明年 11 月1 日取出时,一共存了几年?到期了吗?使学生明白,从去年的 11 月 1 日到明年的 11 月 1 日正好是两年,所以解答这道题的算式应是:8005942 十 8003订正第 6 题时,教师可以提问:“题目的问题是增长百分之几? ,它实际要求的是什么?是以哪个量为单位1的?”(实际求的是 1997 年比 1996 年增加的存款数是 1996 年存款数的百分之几,是以 1996 年的存款为
10、单位“1”的。)所以解答这道题的算式应是:32(14732)100三、提前做完上面题目学有余力的学生,可以做练习一的第 7*题教师可以这样引导学生:先计算出两种储蓄办法各得到多少利息,再进行比较。用第一种储蓄办法,利息是 5005942594(元);用第二种储蓄办法,第一年后可以得到本息合计500567l 十 50052835(元),把 52835 元再存入银行第二年的本息合计52835567l 十 5283555831(元),减去 500 元,两年共得利息 5831 元。所以采取第一种方法得到的利息多一些。四、作业练习一的第 5 题。课题三:成数和折扣*教学内容:教科书第 4 页例 1 和第
11、 5 页例 2,完成第 5 页“做一做”中的题目及练习二的习题。教学目的:使学生理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。教学过程一、导入教师;前面我们学习了百分数的一些应用,像 计算发芽率,出勤率,成活率,还有计算储蓄的利息等。今天我们来学习“成数” ,板书课题;成数成数常常用来说明农业的收成,比如说今- -年的小麦比去上增产二成,苹果比去上减产一成,这“二成”和“一成”是用来说明收 成情况的。说明并板书;“一成”就是十分之一,改写成百分数就是 10%;“二成”就是十分之二,改写成百分数就是 20。小麦比去年增产二成,也就是小麦比去年增产十分之二,即百分之二十。下
12、面让学生回答:“苹果比去年减产一成,表示什么意思?”(表示苹果比去年减产十分之一,即百分之十。) “油菜去年比前年增产三成,表示什么意思?”(表示油菜去年比前年增产十分之三,即百分之三十。)二、新课1教学例 1。出示例 1,让学生读题。提问:“去年比前年多收了二成五,表示什么意思?”(多收了二成五,表示多收了 25。)“怎样计算?根据什么?”学生口述。教师板书算式:416 十 41625或者 416(1 十 25)2教学例 2。教师:你们在商店有没有看到过某某商品打几折出售?比如“运动服打八折出售” ,这是什么意思呢?就是按原价的 80出售。提问:“衬衫打六折出售是什么意思?”(衬衫按原价的
13、60出售。)?“书包打七五折出售是什么意思?”(书包按原价的 75出售。)出示例 2,让学生读题,然后每个学生自己列式计算。让学生说算式并说明根据。教师板书算式:43043090或者 430(190)三、课堂练习1做第 5 页“做一做”中的题目。先让学生自己做,做完后让学生说一说:“是怎样做的?根据是什么?” “还有别的做法吗?”教师:根据题意可以看出,一个水壶的 85是 255 元,所以这道题可以用方程解,也可以直接用除法做。用方程解,设:这个水壶的原价是 2 元。85x255- -x30直接用除法做,2558530(元)。2做练习二的第 1、2、5 题。指定学生每人口答一小题,其它学生核对
14、。3做练习二的第 4 题。让学生独立做,做完后一起订正。订正时可以提问:“减产三成是什么意思?”“去年收的萝卜是前年的百分之几?”(13070。)“怎样列式解答?”学生口述。教师板书算式:15(130)或者 151530。4做完上面的练习题学有余力的学生,可以做练习二的第 7 题。让学生独立做,订正时可以让学生说一说是怎样想的。教师:因为张大伯的 120 千克青菜是分两部分卖出的,其中 是按每千克 240 元卖出的,剩下的 是打八折卖出的。所以可以先求 120 千克的 卖了多少钱,再求剩下的 卖了多少钱,最后再把两次卖的钱加起来,就是这些青菜一共卖了多少钱。3 算式是:240120 十 240
15、120(1 一 )80%四、作业练习二的第 3 题和第 6*题。2整理和复习课题一:复习利息、成数教学内容:“整理和复习”第 15 题,练习三的第 16 题。教学目的:使学生对利息、成数等概念有进步的了解。能够比较熟练地解答有关利息、成数的应用题,将百分数应用于实际生活。教具准备:幻灯片。教学过程:一、复习利息、成数等概念1做“整理和复习”第 1 题。- -请一名学生读题。另请两名学生加以回答,教师补充完整。提问:“同学们准备用自己的存款做些什么事情呢?”让学生自由讨论,教师及时表扬那些准备用自己存款做些有意义的事情的学生,适时进行勤俭节约的教育。2做“整理和复习”第 2 题。请一名学生读题。
16、提问:“什么叫本金、利息、利率?利息的意义是什么?”“利息是怎样计算的?”让几名学生回答然后将本金、利息、利率的概念用幻灯显示,请学生齐读一遍。板书利息的计算公式:利息本金利率时间;3做“整理和复习”第 4 题。请一名学生读题:另请两名学生分别对两个问题加以回答。4做练习三的第 3、4 题。把全体学生分或两组一组做第 3 题,另一组做第 4 题,答案直接写在课堂练习本上:教师巡视及时纠正学生中间出现的错误。最后进行集体订正。二、复习有关利息、成数的应用题1做“整理和复习”第 3 题:请一名学生读题。提问:“要求利息,必须知道哪些数据?”(引导学生在题中找出本金、利率、时间 各是多少。)“计算利
17、息的公式是什么?”(引导学生看黑板上的公式。)。让一名学生到黑板前做,其余学生做在练习本上。教师一边巡视,一边及时纠正学生中出现的错误。最后集体订正。2做练习三的第 1 题。请一名学生读题。教师无需用任何提示,直接让学生计算利息。教师行间巡视,然后集体订正:小结:我们国家还有许多贫困地区的儿童因为家庭困难而失学,许多小朋友都像小英一样把零用钱节省下来存入银行,既支援了国家建设,又可以把利息捐献给“希望工程” 。我们也应该向他们学习,平时勤俭节约,不乱花钱,为贫困地区的儿童献一份爱心。3做练习三的第 2 题。请一名学生读题。教师说明:购买建设债券是支援国家建设的另- -一种方式,和储蓄在实质上是
18、一样的。只是债券的利率一般高于定期储蓄。抽取两名学生到黑板前做,其余学生做在课堂练习本上。教师巡视,等全体学生做完以后,集体订正。尤其要提醒学生注意题目要求的是“到期时一共能取出多少元?”所以在求出利息以后,不要忘记把本金加上。4做“整理和复习”第 5 题。请一名学生读题。提问:“一成五是多少?”“这道题里单位1是谁?” “可以用什么方法计算?哪种方法更简便?”(方程解法和算术解法)分别请两名学生回答这两个问题。请两名学生到黑板前做,分别用方程解法和算术解法进行解答,其余学生做在课堂练习本上。教师边巡视,边纠正学生出现的错误。最后进行集体订正。5做练习三的第 5 题。请一名学生到黑板前做,其余
19、学生做在课堂练习本上。教师巡视,集体订正三、作业练习三的第 6 题。课题二:复习分数的其他应用教学内容:“整理和复习”第 67”题,练习三的第 711*题。教学目的:使学生对折扣、税收等概念有进一步的了解,能够比较熟练地解答有关税收、折扣的应用题,将百分数更好地应用于实际生活。教具准备:幻灯片。教学过程:一、复习折扣的概念1做“整理和复习”第 7*题。- -请。一名学生读题。另请两名学生分别加以回答,教师补充完整。2。做练习三的第 9题。让学生将结果直接写在书上,等全体学生做完以后。进行集体订正。二、复习有关税收、折扣的应用题和百分数的其他应用1。做“整理和复习”第 6 题。请一名学生读题。教
20、师说明:这是一道有关税收的应用题。纳税就是根据国家各种税法的有关规定。按照一定的百分比把集体或个人收入的一部分缴纳给国家。所以,税收的计算也是百分数的一种具体应用。税收是国家财政收入的主要来源,是国家在经济上的生命线,任何国家都不可能离开税收而存在。我国是社会主义国家税收取之于民用之于民。国家用收来的税款发展经济、科技、教育、文化和国防等事业。以便不断提高 人民的物质、文化水平和加强国防建设。依法纳税是每个公民应尽的义务。由于税收的种类较多,税率各不相同,它们的计算公式也各不相同。提问:“这个题目中涉及的是个人所得税。请同学们根据题目的意思,说一说什么是个人所得税,怎样计算个人所得税?”请几名
21、学生回答,教师进行补充。请一名学生到黑板前做,其余学生做在课堂练习本上。教师边巡视,边纠正学生出现的错误;最后进行集体订正。2做练习三的第 7 题。请一名学生读题。提问:。什么是成活率?它的计算公式是什么?”等学生回答完以后,教师在黑板上板书成活率的计算公式。请两位学生到黑板前分别用方程解法和算术解法做,其余学生任选一种方法做在课堂练习本上。教师边巡视,边纠正学生出现的错误,尤其是看学生在写成活率的公式时有没有漏掉;”100” 。最后进行集体订正。3做练习三的第 10 题。请一名学生读题。让学生讨论这道题的解题思路。等学生讨论完以后,教师抽取几名学生回答并进行总结:这道题可以有两种解答思路。一
22、种思路是先按七折算出买这三本书花多少钱,再求出可以节省多少钱,在这种思路中,可以先算出这三本书总钱数的七折,再- -用总钱数减去它,也可以先算出每本书钱数的七折,再分别计算出每本书节省的钱数,然后求出节省的总钱数:另一种思路是直接计算这三本书节省 30的钱,在这种思路中,既可以先分别计算出每本书节省的钱数,再求出节省的总钱数,也可以用总钱数乘以 30求得结果。请学生任选一种方法,做在课堂练习本上。教师巡视,及时纠正学生出现的错误,最后进行集体订正;三、作业练习三的第 8 题。学有余力的学生可以继续完成练习三的第 11*题和思考题。第二单元比例1比例的意义和基本性质课题一:比例的意义和基本性质教
23、学内容:教科书第 910 页比例的意义和基本性质练习四的第 13 题。教学目的:使学生理解比例的意义和基本性质。教学过程:一、教学比例的意义1复习。(1)教师:请同学们回忆一下上学期我们学过的比的知识谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。教师把学生举的例子板书出来,并注明比的各部分的名称。(2)教师:我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗? 教师板书出下面几组比,让学生求出它们的比值。 12:16 :1 45:27 10:6学生求出各比的比值后,再提“请同学们观察一下,哪两个比的比值相等?”(45:27 的比值和 10:6 的比值相等。)教师说明:因为这两
24、个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:45:2710:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)2教学比例的意义。(1)出示例 1:“一辆汽车第一次 2 小时行驶 80 千米,第二次 5 小时行驶 200 千米。 ”指名学生读- -题。教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时” ,第二栏表示路程,单位“千米” 。这辆汽车第一次 2 小时行驶多少千米?第二次 5小时行驶多少千米?(边问边填写表格。)“你能根据这个表,分别写出第一、二次所行驶的路程和时间
25、的比吗?”教师根据学生的回答。板书:第一次所行驶的路程和时间的比是 80:2第二次所行驶的路程和时间的比是 200:5然后让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40, 200:540。让学生观察这两个比的比值。再提问:“你们发现了什么?”(这两个比的比值都是 40。) “所以这两个比怎么样?”(这两个比相等。)教师说明:因为这两个比相等,所以可以把它们用等号连起来。(板书:80:2200:5 或 )像这样(指着这个式子和复习题的式子 4. 5:2710:6)表示两个比相等的式子叫做比例。指着比例式 80:2200:5,提问:“谁能说说什么叫做比例?”引导学生观察是表示两个
26、比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。“从比例的意义我们可以知道比例是由几个比组成的?这两个比必须具备什么条件:因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的 比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一限看出两个比是不是相等?可以先分别把两个比化简以后再看。例如判断 10;12 和 35:1:这两个比能不能组成比例,先要算出10:12 ,35:42 ,所以 10:1235:42:(以上举例边说边板书。)(2)比较“比”
27、和“比例”两个概念。教师:上学期我们学习了“比” ,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢? 引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。- -(3)巩固练习。用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表 示;不能就用两手的食指交叉表示。)6:3 和 12:6 35:7 和 45:920:5 和16:8 08:04 和 : :学生判断后,指名说出判断的根据。做第 10 页的“做一做” 。让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,
28、让他们说说是怎样做的,看看自己做得对不对。给出 2、3、4、6 四个数,让学生组成不同的比例(不要求举全)。做练习四的第 3 题。对于能组成比例的四个数,把能组成的比例写出来:组成的比例只要能成立就可以。第 4 小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。二、教学比例的基本性质1教学比例各部分的名称。教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书第 10 页看第 6 行到 9 行。看看什么叫比例的项、外项、内项。(学生看书时,教师板书:80:2200:5)指名让学生指出板书出的比例的外项、内项。随着学生的回答教师接着板书如下
29、:80 :2:200 :5内项外项2教学比例的基本性质。教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:两个外项的积是 805=400两个内项的积是 2200400- -“你发现了什么?”(两个外项的积等于两个内项的积。)板书:805220“是不是所有的比例式都是这样的呢?”让学生分组计算前面判断过的比例式。“通过计算,大家发现所有的比例式都有这个共同的规律。谁能用一句话把这个规律说出来?”可多让一些学生说,说得不完整也没关系让后说的同学在先说的同学的基础上说得更
30、完整。最后教师归纳并板书出:在比例里两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着 80;2200:5)教师边问边改写成: “这个比例的外项是哪两个数呢?内项呢?”“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式等号两 端的分子和分母分别交叉相乘的积怎么样?”边问边画出交叉线,如: =学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。板书: = 80522003巩固练习。教师:前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本
31、性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。(1)应用比例的基本性质判断 3:4 和 6:8 能不能组成比例。教师:我们可以这样想:先假设 3:4 和 6:8 可以组成比例。再算出两个外项的积(板书:两个外项的积:38:1)和两个内项的积(板书:两个内项的积:4624)。因为 3846(板书出来)也就是说两个外项的积等于两个内项的积,所以3:4 和 6:8 可以组成比例。(边说边板书:3:46:8)(2)做第 11 页“做一做”的第 1 题。三、小结教师:通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?四、作业练习四的第 2 题。
32、- -课题二:解比例教学内容:教科书第 11 页解比例的内容,练习四的第 47 题。教学目的:使学生学会解比例的方法,进一步理解和掌握比例的基本性质。教学过程:一、导人新课教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识这节课我们要学习解比例。(板书课题)二、新课教师:什么叫做解比例呢?我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。1教学例 2。出示例 2:解比例 3:815:X。让学生指出这个
33、比例的外项、内项,并说明知道哪三项求哪一项。再回答:“根据比例的基本性质可以把它变成什么形式?”教师板书:;3X815。“这变成了什么?”(方程。)教师说明:这样解比例就变成解方程了。利用以前学过的解方程的方法就可以求出求知数 x 的值。因为解方程要写“解:” ,所以解比例也应写“解:”(在 3X 前加上:解:)“怎样解这个方程?”(根据乘法各部分间的关系把 X 看作一个因数因为一个因数=积 另一个因数,可以求出 X。)教师板书;XX40教师:从刚才解比例的过程可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数 x。2教学例 3。出示例 3;解比例 =提问:“这
34、个比例与例 2 有什么不同?”(这个比例是分数形式:)“这种分数形式的比例也能根据比例的基本性质,- -变成方程来求解吗?”(能,根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程。)学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边。然后板书:45X908“这个方程你们会解吗?”让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。3总结解比例的过程。提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?”(根据比例的基本性质把比例变成方程。)“变成方程以后,再怎么做?”(根据以前学过的解方程的方法求解。)“从上面的过程可以看出,在解比例的过程中
35、哪一步是新知识?”(根据比例的基本性质把比例变成方程。)4做第 11 页“做一做”的第 2 题。学生独立解答,订正时,让学生说说是怎么做的。三、巩固练习做练习四的第 47 题。1做第 4 题的第(6)题时,要提醒学生先把带分数化成假分数再做。做完后,选二题让学生说说是怎样求解的。2,第 5 题。可指名学生读题,题目告诉了什么,要求什么,然后同桌同学讨论一下这道题可以用什么知识解答。再造几名代表回答。之后,让学生独立解答。3独立完成第 6、7 题。四、学有余力的学生做第 8*、9*题和思考题傲第 8*题的第(1)题教师可以这样引导学生:这道题需要逆用比例的基本性质比例的基本性质是:在一个比例里两
36、个内项的积等于两个外项的积:现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项这样就能推出比例式了:如果把左边的两个数当作比例的内项那么右边的两个数就应作为比例的外项世可以推出比例式。然后让学生自己写出比例式。写完后,教师板书出来。如果把 3、40 作为外项,有下面这些比例式:- -3:815:40 40:158:33:158:40 40:815:3如果把 3、40 作为内项,有下面这些比例式:15:340:8 8:403:1515:403:8 8:340:15可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。学生做完后,可
37、以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。课题三:比例尺教学内容:教科书第 14 一 16 页的例 4 一例 6,练习五的第 l 一 3 题。教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。教学过程:一、复习1,1 厘米( )毫米 1 分米( )厘米1 米( )分米 l 千米( )米220 米( )厘米 50 千米( )厘米30 厘米=( )分米 60 毫米=( )厘米二、新课教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我
38、们教室有多大,它的长和宽大约是多少米。(长大约 8 米,宽大约 6 米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能 吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数。再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。1教学比例尺的意义。- -(1)教学例 4。出示例 4:设计一座厂房,在平面图上用 10 厘米的距离表示地面上 10 米
39、的距离。求图上距离和实际距离的比。让学生读题。指名回答:“这道题告诉我们什么?”(在平面图上用 10 厘米的距离表示地面上 10 米的距离。)“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离:实际距离“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:图上距离:实际距离10 厘米 10 米“10 厘米和 10 米的单位相同吗?能直接化简吗?”教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)“10 米等于多少厘米?”学生回答后,教
40、师把 10 米改写成 1000 厘米。“现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉 10 和 1000 后面的单位“厘米” ,并加上“:” ,板书成如下形式:图上距离:实际距离10 : 1000请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答;”。然后说明:因为在绘制地图和其他平面图时。经常要用到“图上距离和实际距离的比” ,我们就给它起一个名字叫做“比例尺” 。(板书:图上距离:实际距离比例尺)有时图上距离和实际距离的比也可以写成分数形式。(板书: 比例尺)图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是 1 的最
41、简单整数比。教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。最后教师指出:比例尺与一般的尺不同,这是一个比。不应 带计量单位。- -求比例尺时,前、后项的长度单位一定要化成同级单位。如 10 厘米:10 米,要把后项的米化成厘米后再算出比例尺。为了计算简便,通常把比例尺的前项化简成“1” 。如果写成分数形式,分子也应化简成“1” 。比如,例 4 中的比例尺通常写成 1:100 或 。(2)巩固练习。让学生完成第 14 页的“做做” 。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“
42、l” 。2教学根据比例尺求图上距离或实际距离。教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。(1)教学例 5;出示例 5:在比例尺是 1:6000000 的地图上。量得南京到北京的距离是 15 厘米。南京到北京的实际距离是多少千米:指名读题并说出题目告诉了什么。要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离。求南京到北京的实际距离。)教师启发:因为 比例尺。要求实际距离可以用解比例的方法来求。“这道题的图上距离是多少?”板书:1;“实际距离不知道,怎么办?”(用 x 表示。)在 15 的下面板书出 X,并在它们中间画上分数线。“因为图上距离
43、和实际距离的单位要相同,所设的 x 应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为 x 厘米。“比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式:=指定一名学生到前面求 X 的值,其他学生在练习本上做。订正后,回答:“现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么 办?”板书:90000000 厘米900 千米,并写出这道题的答之后再回忆一下解答过程:(2)巩固练习。做第 1;页上的 I;做一做” 。先让学生说出图中的比例尺是多少。表示什么意思,再用直尺量出图中河西村与汽车站间的距离然- -后计算出实际距离:集体订正时,要 注意检查学
44、生是否把实际距离化成了千米(3)教学例 5出示例 6;一长方形操场,长 110 米,宽 90 米,把它画在比例尺是 的图纸上,长和宽各应画多少厘米?指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)教师:我们先来求长的图上距离。长的图上距离不知道,应设为 x。(板书:解:设长应画 X 厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?(板书: )比例尺是多少?(板书: )然后让学生求 x 的值,并说出求解过程。教师板书出来。“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已
45、经用了 x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用 y 来表示。 ”板书:设宽应画 y 厘米。让学生把这道题做完。最后教师写出这道题的答。三、作业练习五的第 13 题。第 3 题,让学生先想想比例尺 表示的意思。(1 厘米的图上距离相当于 100 厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时。要让学生说说计算出的实际的宽和高的单位是什么。课题四:线段比例尺教学内容:教科书第 16 页上的线段比例尺,练习五的第 49 题。教学目的:使学生理解线段比例尺的含义,会根据线段比例尺求图上距离或实际距离。教具准备:教师准备一些线段比
46、例尺的地图或平面图。教学过程:、导人新课教师:上节课我们学习了一些比例尺的知识,- -我们学过的比例尺都是用数值来标明的,如比例尺 1:10000 就表示图上距离是 l 厘米实际距离就是10000 厘米,像这样的比例尺叫做数值比例尺。除了数值比例尺外,还有线段比例尺。什么是线段比例尺呢:这就是我们这节课要学习的内容。(板书课题)二、新课教师:线段比例尺是在图上附有一条注有数量的线段。用来表示和地面上相对应的实际距离。同学们可以翻开教科书第 16 页看右下角有一幅地图。地图的下面就 有一条线段比例尺。它上面有0、50 和 100 几个数,还注明了长度单位“千米” 。这些数和单位表示什么意思呢?大
47、家量一量从 0 到50 这段线段有多长。(1 厘米。)从 50 到 100 呢?(也是 1 厘米。)从 0 到 50 就表示地图上 1 厘米的距离相当于地面上 50 千米的实际距离。从 0 到 100 就表示地图上 2 厘米的距离相当于地面上 100 千米的实际距 离。然后教师问:l“如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的实际距离?”让学生在地图上找到沈阳和长春这两个城市,并量出它们的距离是多少厘米。再想一想:要求地面上这两个城市之间的实际距离大约是多少千米,该怎样计算?引导学生想:1 厘米的图上距离代表地面上多少千米的实际距离,(50 千米。)我们量出沈阳到长春的图上距离是 55 厘米,就代表几个 50 千米的实际距离。(5.5 个 50 千米。)怎么列式计算?让学生说怎样列式。教师板书:5055275(千米)之后,进一步提出:“你能不能把这个地图上的线段比例尺改写成数值比例尺?怎样改写?”(因为图上 1 厘米相当于地面上 50 千米的实际距离,现在图上距离和实际距离的单位不同,根据图上距离:实际距离比例尺,要把图上距离和实际距离的单位化成同级单位,50千米等于 5000000 厘米。所以这条线段比例尺改写成数值比例尺就