收藏 分享(赏)

扶余地区矿层特性及测井模型的建立研究.doc

上传人:无敌 文档编号:157509 上传时间:2018-03-22 格式:DOC 页数:6 大小:84KB
下载 相关 举报
扶余地区矿层特性及测井模型的建立研究.doc_第1页
第1页 / 共6页
扶余地区矿层特性及测井模型的建立研究.doc_第2页
第2页 / 共6页
扶余地区矿层特性及测井模型的建立研究.doc_第3页
第3页 / 共6页
扶余地区矿层特性及测井模型的建立研究.doc_第4页
第4页 / 共6页
扶余地区矿层特性及测井模型的建立研究.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、扶余地区矿层特性及测井模型的建立研究 卓玉龙 吉林省水文地质调查所 摘 要: 扶余油田开发年度跨度大, 测井系列多, 含水率高, 剩余油挖潜难度大。本文先对测井曲线进行标准化, 选取标准层, 结合取心井岩心岩电实验分析数据, 建立适用于本区块的测井解释模型, 对储层内隔夹层进行精细识别及储层测井精细解释, 为该区块剩余油开发提供思路。关键词: 测井精细解释; 隔夹层; 孔隙度; 渗透率; 作者简介:卓玉龙, 男, 生于 1990 年, 汉族, 黑龙江哈尔滨人, 硕士, 助理工程师, 物探、测井解释。收稿日期:2017-09Study on Characteristics of Fuyu Lay

2、er and The Well Logging Models Setting UpZHUO Yu-long Jilin province hydrogeology survey institution; Abstract: The development of the oil field has a large annual span, thus it will has many logging series and high water content in developing history, so it is difficult in exploring the remaining o

3、il. This article set up a standardization of well logging curve firstly and then select a standard layer. Combinating with the core of litho-electric experiment analysis of coring well data to construct the well logging interpretation model which is suitable for this block. within the reservoir inte

4、rlayer insulation, detail identification interpretation work has been done.This article provide a well way to interpretation to remaining oil.Keyword: Well logging interpretation detailly; Interlayer insulation; Porosity; Permeability; Received: 2017-09扶余地区矿层特性及测井模型的建立研究, 是受中国石油天然气股份有限公司吉林油田分公司委托, 由

5、扶余采油厂具体管理, 东北石油大学承担完成的油藏重点攻关项目。对该区块进行测井精细解释研究, 提高采收率, 深化老油田开发, 为油田稳产作贡献。1 区域概况图 1 区域构造位置 下载原图扶余地区地理位置位于吉林省松原市的第二松花江东岸。构造位置位于松辽盆地南部中央凹陷区东缘, 扶新隆起带的扶余三号构造上 (图 1) , 本次研究以扶余油层和杨大城子油层为开发目的层。矿区多见断层且断裂系统较为复杂, 主要矿藏为油藏, 油藏埋深较浅, 油层薄而密并且大多分布在构造的高部位, 储层的物性差异较大, 矿区油层的层间、层内非均质性较强, 聚合物驱和水驱效果较差等地质特点。2 曲线标准化及标准层选取曲线标

6、准化是测井解释的基础工作, 直接影响后期工作的质量, 所以本次工作先对工区内的深侧向电阻率测井曲线进行标准化处理, 对比得出:泉四段顶存在一套具有一定厚度并且产状稳定泥岩, 故此我们将这套泥岩层作为标准层, 建立深侧向电阻率值得频率直方图如图 2 所示。标准层是多井对比的依据, 对于目的层来说, 标准层是基准面。同样是地层对比的地质基础。标准层的选择应具备下述条件:一、该层稳定沉积了一定的厚度;二、测井特征响应较为明显;三、全区都有覆盖, 且距目的层的距离适宜1。2.1 储层物性分析根据扶余矿区区块内取心井 M 的岩心分析数据表明:矿区扶余油层储集层泥质含量在 5.5%11.5%范围内, 平均

7、值 7.2%;矿区杨大城子油层储集层的泥质含量在3。5%12.5%范围内, 平均值为 7.6。矿区扶余油层孔隙度在 13.5%29.5%范围内, 平均值 22%, 渗透率在 2100010m 范围内分布, 渗透率的平均值20010m。矿区杨大城子油层孔隙度在 13%25%范围内, 平均值 22.5%, 渗透率在 1.655010m 范围内, 平均值 6810m。可以看出, 总体上扶余油层和杨大城子油层的储层物性变化不大, 但扶余油层得储层物性特征要优于杨大城子储层。图 2 标准层深侧向电阻率直方图 下载原图2.2 测井解释模型建立在储层“四性”关系研究的基础上, 建立测井解释模型.通过对取心井

8、 M 的岩心分析及测井曲线的响应特征分析, 并结合现场的实际测井资料, 选取合理的测井解释所需的参数, 采用直方图、交会图或适用于本地区的经验公式建立本区的泥质含量、孔隙度和渗透率解释模型2。2.2.1 泥质含量模型建立自然伽马测井曲线在大多数情况下能对泥质含量有良好的数值反映, 泥岩自然伽马测井数值高, 砂岩较低。所以本文也利用自然伽马曲线计算单井的泥质含量值, 其运算公式是:泥质相对指数 GSH= (GR-GRmin) / (GRmax-GRmin) ;泥质含量 Vsh1= (2-1) / (2-1) , GSH 是利用自然伽马值算出的泥质相对指数, 无量纲;Vsh1是利用自然伽马曲线值算

9、取的泥质含量, %;GR max是 M 井某一段泥岩自然伽马测井响应值, API;GR min是 M 井砂岩的自然伽马测井值, API;GR 是测量井段内的自然伽马测井曲线值, API;GCUR 是希尔奇指数, 老地层通常取 2。依据以上的公式及其参数, 我们计算出了取心井 M 的泥质含量 (计算值) , 与取心段的实际数据进行对比分析, 共计对比数据点 225 个, 结果:岩心实验分析的泥质含量与我们计算得出的泥质含量的平均相对误差为 10%, 绝对误差为 1.8% (图 3) 。图 3 储层岩心分析泥质含量与计算泥质含量对比图 下载原图2.2.2 孔隙度模型建立根据常规岩心分析建立孔隙度数

10、据模型, 岩电实验数据分析可知, 声波时差测井值与岩心孔隙度实验值有较高的相关性。所以本文选择声波时差测井曲线来建立孔隙度测井解释模型。本矿区内泥质含量较高, 对声波时差求孔隙度有很大的影响, 所以模型应进行泥质校正。因此, 我们利用声波、泥质含量和孔隙度来进行多元回归, 最后得到泥质含量校正后的孔隙度计算公式:扶余油层 =0.1519t-31.45-0.33Vsh100;杨大城子油层 =0.1574t-31.4-0.33V sh100 其中:为有效孔隙度, %;t 为声波时差, s/m;Vsh为泥质含量, %。利用上述公式和相应参数, 计算 M 取心井的孔隙度, 并与实验取心孔隙度数据进行对

11、比, 共计对比 225 个点, 结论是:扶余油层岩心实验数据孔隙度与计算孔隙度的平均绝对误差为 1.69%, 平均相对误差 6.9% (见图 4) ;扶余油层岩心实验数据孔隙度与计算孔隙度平均绝对误差为 2.65%, 杨大城子油层岩心实验数据孔隙度与计算孔隙度平均相对误差为 11.5% (见图 5) , 符合率可以满足矿区二次测井解释的精度要求。图 4 矿区扶余油层岩心分析孔隙度与计算孔隙度对比图 下载原图图 5 矿区杨大城子油层岩心分析孔隙度与计算孔隙度对比图 下载原图2.2.3 渗透率模型建立研究表明, 渗透率与孔隙度之间的存在一个正相关的总趋势, 渗透率随着储层孔隙度增大而增大。岩心实验

12、数据关系可知, 岩石颗粒粒径增大, 储层渗透率数值也会增大。此外, 储层会存在裂缝孔隙, 储层的孔隙度虽然变化不大, 但渗透率数值变化却十分明显3。因为裂缝会贯穿储层形成通道, 大大增加了储层的渗透能力。现今, 运用测井曲线资料来计算渗透率, 精度也只能达到数量级大小, 可以说成是一种渗透率估计。因为渗透率是一个受多种因素影响的变量, 如泥质含量、孔隙结构、喉道大小、粘土类型、裂缝、孔隙度大小等参数。利用矿区取心井 M 井, 依据岩心实验数据分析储层孔隙度和渗透率的统计回归关系式是:扶余油层渗透率:K=0.00029e;杨大城子油层渗透率:K=0.0029e, 其中:K 为渗透率, 10m,

13、为孔隙度, %。取心井岩电数据与计算渗透率进行对比, 共计对比 225 个数据点, 矿区扶余油层岩心实验分析渗透率与计算渗透率平均相对误差为 9.5% (图 6) , 矿区杨大城子油层岩心实验分析渗透率与计算渗透率平均相对误差为 7.6% (图 7) , 符合矿区储层的二次测井解释的精度要求。图 6 矿区扶余油层岩心分析渗透率与计算渗透率对比 下载原图图 7 矿区杨大城子油层岩心分析渗透率与计算渗透率对比 下载原图2.2.4 含水饱和计算模型建立矿区油层的含油性定量评价即含水饱和度是油田储量计算的重要环节, 同样也是油水层判断的重要依据4。油层含油饱和度与构造位置高低有密切相关, 也受储层岩性

14、、物性等多种岩石参数的影响。现今, 饱和度测井解释模型通常利用阿尔奇公式计算储层的含水饱和度, 利用含水饱和度系统的反映储层岩性、物性、胶结情况等。经岩电实验综合分析, 确定了矿区阿尔奇公式的含水饱和度岩电指数 a, b, m, n 的值。建立含水饱和度公式:S w= (ab Rw) / (R t) , 岩电参数 a、b、m、n 由岩电实验提供, 其中 a=1.11, m=1.49, b=1.01, n=1.82;Rw为地层水电阻率平均值 (M 井测试为 1.2m) ;R t为原状地层电阻率, 可以用探测向电阻率代替, m; 为油层的有效孔隙度, %。因此, 矿区测井解释模型的建立可以直接用阿

15、尔奇公式求储层含水饱和度。经过验证, 此公式适用于本矿区含水饱和度解释5。2.2.5 实际资料处理及模型精度验证在实际资料处理过程中, 我们选取本区内测井系列较为完整的 218 口井进行精细解释, 利用自然伽马 GR、声波时差 AC 和孔隙度 求取矿区目的层的泥质含量、孔隙度和渗透率, 再利用阿尔奇公式求储层含油饱和度, 最后, 我们得到了 218 口井的单井泥质含量、孔隙度、渗透率等地球物理参数的测井数字处理结果。测井解释模型的建立是测井二次解释中最重要的工作。经过数理统计、制图分析、相关分析、经验分析等多种方法建立的测井二次解释模型对油田矿区的储量套改提供了比较精确的储层参数。实际试油分析

16、得出该解释方法具有较高的精度和使用价值。参考文献1王志章, 熊琦华.油藏描述中的测井资料数据标准化方法和程序J.测井技术, 1994, 18 (6) :402-407. 2王月莲, 宋新民.按流动单元建立测井储集层解释模型J.石油勘探与开发, 2002, 29 (3) :53-55. 3张庆国, 李迎九, 周新茂.注水开发油田储集层水淹主控因素分析J.大庆石油学院学报, 2006, 30 (4) :98-100. 4Clayton V Deutsch.Reservoir modeling with publicly available softwareJ.Computers&Geosciences.1999, 25:355-363. 5欧阳健.测井多井分析J.测井技术, 1987, 11 (6) :27-34.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 学术论文 > 期刊/会议论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报