1、公务员招聘考试复习资料-公务员数量关系通关试题每日练(2018年02月08日-758)公务员招聘考试复习资料-公务员数量关系通关试题每日练(2018年02月08日-758) 1:长方体各棱长之和是48,长、宽、高之比为321,则长方体的体积是( ) 单项选择题A. 48B. 46C. 384D. 3072 2:一满杯纯牛奶,喝去20后用水加满,再喝去60。此时杯中的纯牛奶占杯子容积的百分数为( ) 单项选择题A. 52B. 48C. 42D. 32 3:药厂使用电动研磨器奖一批晒干的中药磨成药粉。厂长决定从上午10点开始,增加若干台手工研磨器辅助作业,他估算如果增加2台,可在晚上8点完成,如果
2、增加8台,可在下午6点完成,问如果希望在下午3点完成,需要增加多少台手工研磨器?() 单项选择题A. 20B. 24C. 26D. 32 4:数字22016-1可被( )整除。 单项选择题A. 2B. 4C. 5D. 6 5:边长为1米的正方体525个,堆成了一个实心的长方体,它的高是5米,长、宽都大于高,则长方体的长与宽的和是多少米( ) 单项选择题A. 21米B. 22米C. 23米D. 24米 6:1, 2, 6, 30, 210, ( ) 单项选择题A. 1890B. 2310C. 2520D. 2730 7:2, 4, 4, 8, 16, ( ) 单项选择题A. 48B. 64C.
3、128D. 256 8:小赵每工作9天连休3天,某次他在周五、周六和周日连休,问他下一次在周六、周日连休是在本次连休之后的第几周? 单项选择题A. 3B. 5C. 7D. 9 9:一个由边长25人和15人组成的矩形方阵,最外面两圈人数总和为: 单项选择题A. 232B. 144C. 165D. 196 10:0,3,8,15,( ),35 单项选择题A. 12B. 24C. 26D. 30 11:-30, -4, ( ), 24, 122, 340 单项选择题A. -1B. -2C. 6D. 13 12:2, 3, 10, 15, 26, ( ) 单项选择题A. 30B. 35C. 38D.
4、57 13:在直径10米的圆形小广场上放置了7根旗杆,将距离最近的两根旗杆用绳子连起来,问绳子的长度最长可能为多少米? 单项选择题A. 如图所示B. 如图所示C. 如图所示D. 如图所示 14:盒子里有红、黄、绿三种颜色的大小相等的球,其中红球有7个,黄球有5个.从盒中任意拿出一个球,拿到黄球的可能性为1/3,问拿到绿球的可能性是多少?() 单项选择题A. 1/3B. 1/4C. 1/5D. 1/7 15:3, -2, 1, 3, 8, 61, ( ) 单项选择题A. 3692B. 3713C. 3764D. 3816 16:工厂需要加工一批零件,甲单独工作需要96个小时完成,乙需要90个小时
5、,丙需要80个小时。现在按照第一天甲乙合作,第二天甲丙合作,第三天乙丙合作的顺序轮班工作,每天工作8小时,当全部零件完成时,乙工作了多少小时?() 单项选择题A.B.C.D. 17:一艘船在河水流速为每小时15公里的河中央抛锚,停在码头下游60公里处。一艘时速为40公里的救援船从码头出发前去拖船,已知救援船拖上另一艘船后,船速将下降1/4。救援船从码头出发,一共需要大约( )小时才能将抛锚的船拖回码头。 单项选择题A. 3B. 3.5C. 4D. 5.1 18:. 单项选择题A. 如图所示B. 如图所示C. 如图所示D. 如图所示 19:某种溶液的浓度为20%,加入水后溶液的浓度变为15%。如
6、果再加入同样多的水,则溶液浓度变为( ) 单项选择题A. 13%B. 12.5%C. 12%D. 10% 20:9/30,7/20,( ),3/6,1/2 单项选择题A. 5/7B. 5/9C. 5/12D. 5/18 21:7, 9, 13, 21, 37, ( ) 单项选择题A. 57B. 69C. 87D. 103 22:有甲、乙两个水池,其中甲水池中一直有水注入。如果分别安排8台抽水机去抽空甲和乙水池,则分别需要16小时和4小时,如给甲水池加5台,则可以提前10小时抽空。若共安排20台抽水机,则为了保证两个水池能同时抽空,在甲水池工作的抽水机应该比乙水池多多少台?( ) 单项选择题A.
7、 4B. 6C. 8D. 10 23:有两个三口之家一起出行去旅游,他们被安排坐在两排相对的座位上,其中一排有3个座位,另一排有4个座位。如果同一个家庭成员只能被安排在同一排座位相邻而坐,那么共有多少种不同的安排方法( ) 单项选择题A. 36B. 72C. 144D. 288 24:将10名运动员平均分成两组进行对抗赛,问有多少种不同的分法? 单项选择题A. 120B. 126C. 240D. 252 25:某公司有三个部门,第一个部门的人数是其他两个部门人数的三分之一,第二个部门的人数是其他两个部门人数的五分之一,第三个部门有35人。则第一个部门与第二个部门人数相差多少( ) 单项选择题A
8、. 4B. 5C. 6D. 8 26:一个总额为100万的项目分给甲、乙、丙、丁四个公司共同完成,甲、乙、丙、丁分到项目额的比例为请问甲分到的项目额为多少万( ) 单项选择题A. 35万B. 40万C. 45万D. 50万 27:速算比赛,小李全对的概率为95%,小杨全对的概率为92%,问这次比赛两人中只有一个人全对的概率为:() 单项选择题A. 0.046B. 0.076C. 0.122D. 0.874 28:学校体育部采购一批足球和篮球,足球和篮球的定价分别为每个80元和100元。由于购买数量较多,商店分别给予足球25%、篮球20%的折扣,结果共少付了22%。问购买的足球与篮球的数量之比是
9、多少?() 单项选择题A. 4:5B. 5:6C. 6:5D. 5:4 29:3, 7, 13, 21, 31, ( ) 单项选择题A. 38B. 41C. 43D. 49 30:有一只怪钟,每昼夜设计成10小时,每小时100分钟,当这只怪钟显示5点时,实际上是中午12点,当这只怪钟显示8点50分时,实际上是什么时间( ) 单项选择题A. 17点50分B. 18点10分C. 20点04分D. 20点24分 31:. 单项选择题A.B.C.D. 32:某单位利用业余时间举行了3次义务劳动,总计有112人次参加。在参加义务劳动的人中,只参加1次、参加2次和3次全部参加的人数之比为5:4:1。问该单
10、位共有多少人参加了义务劳动?() 单项选择题A. 70B. 80C. 85D. 102 33:-1, 2, 1, 8, 19, ( ) 单项选择题A. 62B. 65C. 73D. 86 34:一项工程有甲,乙,丙三个工程队共同完成需要22天,甲队工作效率是乙队的二分之三倍,乙队3天的工作量是丙对2天工作量的三分之二,三队同时开工,2天后,丙队被调往另一工地,那么甲,乙再干多少天才能完成该工程? 单项选择题A. 20B. 28C. 38D. 42 35:. 单项选择题A. 14B. 15C. 16D. 17 36:1,1,3/4,4/8,( ) 单项选择题A. 5/16B. 8/16C. 6/
11、32D. 16/32 37:. 单项选择题A.B.C.D. 38:128, ( ), 8, 2, 4,1/2 单项选择题A. 64B. 55C. 16D. 28 39:某班级去超市采购体育用品时发现买4个篮球和2个排球共需560元,而买2个排球和4个足球共需500元。问如果篮球、排球和足球各买1个,共需多少元( ) 单项选择题A. 250元B. 255元C. 260元D. 265元 40:甲、乙、丙三人打羽毛球,每一局由两人上场,另一人做裁判。第一句抽签决定裁判,往后每一局的比赛在上一局的胜者和上一局的裁判之间进行。打了若干场之后,甲胜了10局,则乙和丙各负了8局,则他们至少打了( )局 单项
12、选择题A. 20B. 21C. 22D. 23 查看答案 1:答案A 解析 2:答案D 解析 D。本题属于浓度问题。第一次喝去20%后纯牛奶剩余了80%,再喝去60%后只剩了80%40%=32%,所以选择D选项。 3:答案C 解析 C。 4:答案C 解析 C。22016-1结果只能为奇数,因此只能选C。 5:答案B 解析 6:答案B 解析 B。 7:答案B 解析 8:答案B 解析 54.B。【解析】本周开始,每周休息状况如下:很明显,下次周六周日连休是在本周后的第五周。 9:答案B 解析 B。 10:答案B 解析 11:答案B 解析 12:答案B 解析 13:答案C 解析 C。要使连接距离最近
13、的两根旗杆绳子的长度最长,就应该使旗杆离得最近的两根离得尽可能远,可以如此构造,即中间圆心一根,另外6根均匀分布于圆周,所以最短的最长为半径5。 14:答案C 解析 C。黄球有5个,拿到黄球的可能性为1/3,即盒子里球总共有15个,则绿球共有15-7-5=3个,拿出一个球时绿球的可能性为3/15=1/5,因此,本题答案选择C项。 15:答案B 解析 16:答案C 解析 C。 17:答案D 解析 D。去:时间=60(40+15);回:时间=60(30-15);总时间为两个时间和,前一个大于1,后一个为4,则总的大于5,观察可知选D。 18:答案D 解析 D。这是一道分数数列,属于整体观察法的题目
14、:特征(1)前一个分子分母的乘积等于后一个分数的分母,所以,空缺项的分母为23210=4830;特征(2)前一个分母分子之差等于后一个分数的分子,所以空缺项的分子为:21023=187,因此,本题答案为D选项。 19:答案C 解析 20:答案C 解析 C。 21:答案B 解析 B。 22:答案C 解析 C。设每台抽水机每小时的抽水量为1,则乙池的容量为841=32。设甲池每小时的注水量为m,甲池容量为n,根据“甲池排水量=甲池容量+甲池进水量”可得解得设甲池安排x台抽水机,乙池安排(20x)台抽水机,根据“两个水池同时抽空”可得,解得x=14。则甲池安排14台,乙池安排6台,甲池比乙池多146
15、=8(台)。 23:答案C 解析 24:答案B 解析 B。【解析】将10人平均分成两组实际就是从10人中选出5人,=252人。考虑到重复情况,实际参加的人数是252/2=126人。 25:答案B 解析 26:答案B 解析 27:答案C 解析 C。 28:答案B 解析 B。 29:答案C 解析 30:答案D 解析 31:答案A 解析 32:答案A 解析 A。 33:答案A 解析 A。 34:答案C 解析 C。工程问题,赋值法。由题意,总量=效率时间,符合赋值法A=BC的形式,时间是给定量22天,效率为限定条件,则从限定条件入手赋值,乙的效率赋值为4,则甲乙丙分别为6、4、9,三队一起效率为19,
16、则总量可求为1922;题目中要求同时开工两天后干了192,还剩1920,甲乙一起干效率为10,则还需要192010=38天。因此,本题答案为C。 35:答案A 解析 A。中间数字既是左斜线对角数字之商,也是右斜线对角数字之差。因此未知项为423=16-2=14。 36:答案A 解析 37:答案D 解析 38:答案C 解析 39:答案D 解析 40:答案C 解析 C。根据题目,乙负了8局,说明乙做裁判至少8局,因此甲和丙打了8局。同理,丙负了8局,丙做裁判至少8局,说明甲和乙打了8局,因此甲,共打了8+8=16局,而甲胜了10局,说明甲输了6局,因此说明乙和丙打了6局,因此三人至少共打8+8+6=22局。 21 / 21