1、1简单的轴对称图形课题 5.3.2 简单的轴对称图形 课型教学目标1 本节通过实践操作与思考的有机结合, 帮助我们认识简单的轴对称图形。经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念2 探索并了解线段垂直平分线的有关性质3应用线段垂直平分线的性质解决一些实际问题重点 了解线段垂直平分线的有关性质难点 应用线段垂直平分线的性质解决一些实际问题教学用具投影仪教学环节说 明 二次备课复习1 什么是轴对称图形?2下列图形哪些是轴对称图形?新课导入欣赏几幅图片课 程 讲 授第二环节 创设问题情境,激发学 生的求知欲活动内容:学生作品呈 现:多彩的脸谱,美丽的蝴蝶、飞机,一片迷人的景
2、色。出示课题:简单的轴对称图形(二) 第三环节 探索研究,充分发挥学生的主体作用探索 1:探索线段的对称性:线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?这条对称轴与线段存在着什么关系?问题思考:MO 与 AB 具有怎样的位置关系?AO 与 BO 相等吗?MA 与 MB 呢?能说明你的理由吗?在折 痕上移动 M 的位置,结果会怎样? 2实验结论:线段是轴对称图形,它的对称轴有两条:一条是线段 AB 本身所在的直线;另一条是 CD,它垂直于 AB 又平分 AB,称作 AB 的垂直平分线无论 M 点取 在直线的何处,线段 MA 和 MB 都重合线段垂直平分线的概念:垂直且平分一条线段的直线
3、叫这条线段的垂直平分线线段的垂直平分线的性质:线段的垂直平 分线上 的点到这条线段两个端点的距离相等探索 2:尺规作图活动内容:如图,已知线段 AB,请画出它的垂直平分线. 1、多媒体展示历史上用直尺和圆规画出的美妙图形,介绍相关数学史。2、学生首先进行自学,然后请两位同学到背板板演,其余同学在练习本上进行尺规作图。教师适时强调写出规范的己知、求 作。完后各小组互相检查,教师再针对存在的问题进行强调纠正,加深学生对作法的理解和掌握。3、各小组讨论:为什么所作的直线就是已知线段的垂直平分线?第四环节 结合所学,拓展思维活动内容:1 如图,点 C 在直线 l 上,试过点 C 画出直线 l 的垂线能
4、否利用画线段垂直平分线的方法解决呢?试试看,完成整个作图 2 如图,如果点 C 不在直线 l 上,试和同学讨论,应采取怎样的步骤,过点 C 画出直线 l的垂线? 第五环节 提高练习,学以致用1.在ABC 中,BC=10,边 BC 的垂直平分线分别交 AB,BC 于点E,D,BE=6,求BCE 的周长 EDB CA A BEDC A B C D E 第 1 题 第 2 题 第 3 题ADE BCMN第 4 题32.如图,AB 是 ABC 的一条边,DE 是 AB 的垂直平分线,垂足为 E,并交 BC 于点 D,已知 AB=8cm,BD=6cm,那么 EA=_, DA=_.3. 如图,在ABC 中,AB=AC=16cm,AB 的垂直平分线交 AC 于 D,如果 BC=10cm,那么BCD 的周长是_cm. 4.如图,已知点 D 在 AB 的垂直平分线上,如果 AC=5cm,BC=4cm,那么BDC 的周长是 cm。5.(拓展提高)A,B,C 三点表示三个工厂,现要建一供水站,使它到这三个工厂的距离相等,请在图中标出供水站的位置 P,请给予说明理由。小结 本课内容作业布置课本 P39 18板书设计简单的轴对称图形1 什么是轴对称图形?2.线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?这条对称轴与线段存在着什么关系?课后反思AB C