1、12013 年最新版人教版七年级数学下册知识点第五章 相交线与平行线一、知识网络结构二、知识要点1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是邻补角。邻补角的性质: 邻补角互补 。如图 1 所示, 与 互为邻补角,与 互为邻补角。 + = 180; + = 180; + = 180;+ = 180。4、两条直线相交所构成的四个
2、角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图 1 所示, 与 互为对顶角。 = ;= 。5、两条直线相交所成的角中,如果有一个是 直角或 90时,称这两条直线互相垂直,其中一条叫做另一条的垂线。如图 2 所示,当 = 90时, 。垂线的性质:性质 1:过一点有且只有一条直线与已知直线垂直。平 移 命 题 、 定 理 的 两 直 线 平 行: 平 行 于 同 一 条 直 线性 质 角 互 补: 两 直 线 平 行 , 同 旁 内性 质 相 等: 两 直 线 平 行 , 内 错 角性 质 相 等: 两 直 线 平 行 , 同 位
3、 角性 质平 行 线 的 性 质 的 两 直 线 平 行 : 平 行 于 同 一 条 直 线判 定 直 线 平 行 : 同 旁 内 角 互 补 , 两判 定 线 平 行 : 内 错 角 相 等 , 两 直判 定 线 平 行 : 同 位 角 相 等 , 两 直判 定定 义平 行 线 的 判 定 平 行 线, 不 相 交 的 两 条 直 线 叫平 行 线 : 在 同 一 平 面 内平 行 线 及 其 判 定 内 角同 位 角 、 内 错 角 、 同 旁垂 线相 交 线相 交 线相 交 线 与 平 行 线 4321 4321_:图 1 1 3 4 2 图 2 1 3 4 2 a b 2性质 2:连接
4、直线外一点与直线上各点的所有线段中,垂线段最短。性质 3:如图 2 所示,当 a b 时, = = = = 90。点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。6、同位角、内错角、同旁内角基本特征:在两条直线(被截线)的 同一方 ,都在第三条直线(截线) 的 同一侧 ,这样的两个角叫 同位角 。图 3 中,共有 对同位角: 与 是同位角;与 是同位角; 与 是同位角; 与 是同位角。在两条直线(被截线) 之间 ,并且在第三条直线(截线) 的 两侧 ,这样的两个角叫 内错角 。图 3 中,共有 对内错角: 与 是内错角; 与 是内错角。在两条直线(被截线)的 之间 ,都在第
5、三条直线(截线) 的 同一旁 ,这样的两个角叫 同旁内角 。图 3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。平行线的性质:性质 1:两直线平行,同位角相等。如图 4 所示,如果 ab,则 = ; = ; = ; = 。性质 2:两直线平行,内错角相等。如图 4 所示,如果 ab,则 = ; = 。性质 3:两直线平行,同旁内角互补。如图 4 所示,如果 ab,则 + = 180;+ = 180。性质 4:平行于同一条直线的两条直线互相平行。如果
6、ab,ac,则 。8、平行线的判定: 判定 1:同位角相等,两直线平行。如图 5 所示,如果 = 或 = 或 = 或 = ,则 ab。判定 2:内错角相等,两直线平行。如图 5 所示,如果 = 或 = ,则 ab 。判定 3:同旁内角互补,两直线平行。如图 5 所示,如果 + = 180;+ = 180,则 ab。判定 4:平行于同一条直线的两条直线互相平行。如果 ab,ac,则 。9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果图 3 a 5 7 8 6 1 3 4 2 b c 图 4 a 5 7 8 6 1 3 4 2 b c 图 5 a
7、 5 7 8 6 1 3 4 2 b c 3题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。平移性质:平移前后两个图形中对应点的连线平行且相等;对应线段相等;对应角相等。第六章 实数【知识点一】实数的分类1、按定义分类:
8、 2.按性质符号分类:注:0 既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数0 的相反数是 0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于 0.a、b 互为相反数 a+b=0.2.绝对值 |a|03.倒数 (1)0 没有倒数 (2)乘积是 1 的两个数互为倒数a、b 互为倒数 .4.平方根(1)如果一个数的平方等于 a,这个数就叫做 a 的平方根一个正数有两个平方根,它们互为相反数;0 有一个
9、平方根,它是 0 本身;负数没有平方根a(a0)的平方根记作(2)一个正数 a 的正的平方根,叫做 a 的算术平方根a(a0)的算术平方根记作 5.立方根如果 x3=a,那么 x 叫做 a 的立方根一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零【知识点三】实数与数轴数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可【知识点四】实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于 0,负数都小于 0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.无理数的比较大小:【知识点五】实数的运算1.加法4同号两
10、数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得 0;一个数同 0 相加,仍得这个数2.减法:减去一个数等于加上这个数的相反数3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负几个数相乘,有一个因数为 0,积就为 04.除法除以一个数,等于乘上这个数的倒数两个数相除,同号得正,异号得负,并把绝对值相除0 除以任何一个不等于 0 的数都得 05.乘方与开方(1)an 所表示的意义是 n 个 a 相乘,正数的任何次幂是正数,负数的偶次幂是正
11、数,负数的奇次幂是负数(2)正数和 0 可以开平方,负数不能开平方;正数、负数和 0 都可以开立方(3)零指数与负指数【知识点六】有效数字和科学记数法1.有效数字:一个近似数,从左边第一个不是 0 的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字2.科学记数法:把一个数用 (1 10,n 为整数)的形式记数的方法叫科学记数法第七章 平面直角坐标系一、知识网络结构 用 坐 标 表 示 平 移用 坐 标 表 示 地 理 位 置坐 标 方 法 的 简 单 应 用平 面 直 角 坐 标 系有 序 数 对平 面 直 角 坐 标 系二、知识要点1、有序数对:有顺序的两个数 a 与 b
12、组成的数对叫做有序数对,记做(a,b) 。2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。3、横轴、纵轴、原点:水平的数轴称为 x 轴或横轴;竖直的数轴称为 y 轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。4、坐标:对于平面内任一点 P,过 P 分别向 x 轴, y 轴作垂线,垂足分别在 x 轴, y 轴上,对应的数 a,b分别叫点 P 的横坐标和纵坐标,记作 P(a,b) 。5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。6、各象限点的坐标特点第一象限的点:横坐标
13、0,纵坐标 0;第二象限的点:横坐标 0,纵坐标 0; 第三象限的点:横坐标 0,纵坐标 0;第四象限的点:横坐标 0,纵坐标 0。7、坐标轴上点的坐标特点 x 轴正半轴上的点:横坐标 0,纵坐标 0; x 轴负半轴上的点:横5坐标 0,纵坐标 0; y 轴正半轴上的点:横坐标 0,纵坐标 0; y 轴负半轴上的点:横坐标 0,纵坐标 0;坐标原点:横坐标 0,纵坐标 0。(填“” 、 “”或“=”)8、点 P(a,b) 到 x 轴的距离是 |b| ,到 y 轴的距离是 |a| 。9、对称点的坐标特点关于 x 轴对称的两个点,横坐标 相等,纵坐标 互为相反数;关于 y 轴对称的两个点,纵坐标相
14、等,横坐标互为相反数;关于原点对称的两个点,横坐标、纵坐标分别互为相反数。10、点 P(2,3) 到 x 轴的距离是 ; 到 y 轴的距离是 ; 点 P(2,3) 关于 x 轴对称的点坐标为( , );点 P(2,3) 关于 y 轴对称的点坐标为( , )。11、如果两个点的 横坐标 相同,则过这两点的直线与 y 轴平行、与 x 轴垂直 ;如果两点的 纵坐标相同,则过这两点的直线与 x 轴平行、与 y 轴垂直 。如果点 P(2,3) 、Q(2,6),这两点横坐标相同,则PQ y 轴,PQ x 轴;如果点 P(-1,2)、Q(4,2) ,这两点纵坐标相同,则 PQx 轴,PQ y 轴。 12、平
15、行于 x 轴的直线上的点的纵坐标相同;平行于 y 轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点 P(a,b) 在一、三象限角平分线上,则 P 点的横坐标与纵坐标相同,即 a = b ;如果点 P(a,b) 在二、四象限角平分线上,则 P 点的横坐标与纵坐标互为相反数,即 a = b 。13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。14、图形的平移可以转化为点的平移
16、。坐标平移规律:左右平移时,横坐标进行加减,纵坐标不变;上下平移时,横坐标不变,纵坐标进行加减;坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点 P(2,3)向左平移 2 个单位后得到的点的坐标为( , );将点 P(2,3)向右平移 2 个单位后得到的点的坐标为( , );将点 P(2,3) 向上平移 2 个单位后得到的点的坐标为( , );将点P(2, 3)向下平移 2 个单位后得到的点的坐标为( , );将点 P(2,3)先向左平移 3 个单位后再向上平移 5 个单位后得到的点的坐标为( , );将点 P(2,3)先向左平移 3 个单位后再向下平移 5 个单位后得到的点的坐标为
17、( , );将点 P(2,3)先向右平移 3 个单位后再向上平移 5 个单位后得到的点的坐标为( , );将点 P(2,3)先向右平移 3 个单位后再向下平移 5 个单位后得到的点的坐标为( , )。第八章 二元一次方程组一、知识网络结构二、知识要点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。2、方程含有两个未知数,并且含有未知数的项的次数都是 1,这样的方程叫二元一次方程,二元一次方程的一般形式为 ( 为常数,并且 )。使二元一次方程的左右两边的值相cbyax、 0ba,三 元 一 次 方 程 组 解 法 问 题二 元 一 次 方 程 组 与 实 际 加 减 法
18、代 入 法二 元 一 次 方 程 组 的 解 法方 程 组 的 解定 义二 元 一 次 方 程 组 方 程 的 解定 义二 元 一 次 方 程二 元 一 次 方 程 组6等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。3、方程组含有两个未知数,并且含有未知数的项的次数都是 1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,
19、用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。6、解三元一次方程组的一般步骤:观
20、察方程组中未知数的系数特点,确定先消去哪个未知数;利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;解这个二元一次方程组,求得两个未知数的值;将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。第九章 不等式与不等式组一、知识网络结构二、知识要点1、用不等号表示不等关系的式子叫不等式,不等号主要包括: 、 、 、 、 。2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可
21、以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是 1,这样的不等式叫一元一次不等式。3、不等式的性质:性质 1:不等式的两边同时加上(或减去) 同一个数(或式子) ,不等号的方向 不变 。用字母表示为: 如果 ,那么 ; 如果 ,那么 ;bacbbacb如果 ,那么 ; 如果 ,那么 。性质 2:不等式的两边同时乘以(或除以) 同一个 正数 ,不等号的方向 不变 。用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或0,cbabca0,cbabca与 实 际 问 题组一 元 一 次 不 等 式 法一 元 一 次 不 等 式 组 的 解不 等
22、 式 组一 元 一 次 不 等 式 组性 质性 质性 质不 等 式 的 性 质 一 元 一 次 不 等 式不 等 式 的 解 集不 等 式 的 解不 等 式不 等 式 相 关 概 念不 等 式 与 不 等 式 组 )(3217);cba如果 ,那么 (或 );如果 ,那么 (或0,cbabca0,cbabca);cba性质 3:不等式的两边同时乘以(或除以) 同一个 负数 ,不等号的方向 改变 。用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或0,cbabca0,cbabca);cba如果 ,那么 (或 );如果 ,那么 (或0,cbabca0,cbabca);cba4、解一元一次不
23、等式的一般步骤:去分母;去括号;移项;合并同类项; 系数化为 1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。5、不等式组中含有一个未知数,并且所含未知数的项的次数都是 1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解 )。不等式组的解集可以 在数轴上表示出来。求不等式组的解集的过程叫解不等式组。6、解一元一次不等式组的一般步骤:求出这个不等式组中各个不等式的解集;利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式
24、的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )。7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。第十章 数据的收集、整理与描述知识要点1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量 。5、画频数直方图的步骤:计算数差(最大值与最小值的差) ;确定组距和组数; 列频数分布表;画频数直方图 。