1、第二节 基因工程及其应用,一、基因工程原理,基因工程又叫做基因拼接技术或DNA重组技术。,通俗地说,就是按照人们的意愿,把一种生物的个别基因复制出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状(目的)。,原 理:,操作水平:,结 果:,目的基因,供体细胞,受体细胞,基因重组,DNA分子水平,定向地改造生物的遗传性状,获得人类所需要的品种。,获得新性状,提取,培育转基因大肠杆菌的简要过程,你认为上述培育转基因大肠杆菌的关键步骤有哪些?,普通大肠杆菌(不能分泌胰岛素),人体组织细胞,胰岛素基因,与运载体DNA拼接导入,大肠杆菌(含胰岛素基因),转基因大肠杆菌(能分泌胰岛素)
2、,实例展示:,培育转基因大肠杆菌的关键步骤,基因的剪刀限制性核酸内切酶(简称限制酶),(一)基因操作的工具,限制酶是在生物体(主要是微生物)内的一种酶,能将外来的DNA切断,由于这种切割作用是在DNA分子内部进行的,故名限制性核酸内切酶。 特点:专一性。 即一种限制酶只能识别一种特定的核苷酸序列,并且能在特定的切点上切割DNA分子。,大肠杆菌(EcoRI)的一种限制酶能识别GAATTC序列,并在G和A之间切开。,限制酶,练习使用EcoRI 剪切目的基因,黏性末端,什么叫黏性末端?,被限制酶切开的DNA两条单链的切口,带有几个伸出的核苷酸,他们之间正好互补配对,这样的切口叫黏性末端。,1、被同一
3、种限制酶切断的几个DNA是否具有相同的黏性末端?,思考:,2、限制酶的发现有什么意义?,形成的黏性末端不同,基因工程创立的标志,不同的限制酶呢?,具有。,基因的针线DNA连接酶,(二)基因操作的工具,DNA连接酶可把黏性末端之间的缝隙“缝合”起来,即把梯子两边扶手的断口连接起来,这样一个重组的DNA分子就形成了。,磷酸二酯键,连接酶的作用是:将互补配对的两个黏性末端连接起来,使之成为一个完整的DNA分子。,使用DNA连接酶制作重组DNA分子,甲片段,重组DNA分子,(二)基因操作的工具,导入过程需要运输工具运载体。,运载体的作用有哪些?,作用一:作为运载工具,将外源基因(抗虫基因)转移到受体细
4、胞(棉花细胞)中去。作用二:利用运载体在受体细胞(棉花细胞)内,对外源基因(抗虫基因)进行大量复制。,外源基因(如抗虫基因)怎样才能导入受体细胞(如棉花细胞)?,基因的运载工具运载体:,常用的运载体主要有三类: 1)质粒 2)噬菌体 3) 某些动植物病毒,质粒:,质粒是染色体外能够进行自主复制的遗传单位,包括真核生物的细胞器和细菌细胞中核区外的DNA分子。现在习惯上用来专指细菌、酵母菌和放线菌等生物中核以外的DNA分子。 质粒是基因工程最常用的运载体。 绝大多数细菌质粒都是闭合环状DNA分子。有的一个细菌中有一个,有的一个细菌中有多个。,大肠杆菌的质粒,最常用的质粒是大肠杆菌的质粒,其中常含有
5、抗药基因,如四环素的标记基因。 质粒的存在与否对宿主细胞生存没有决定性作用,但复制只能在宿主细胞内完成。,运载体应该具有什么特点呢?,?,胰岛素基因,运载体1.能够在宿主细胞内复制并稳定保存;2.具有多个限制酶切点以便与外源基因相连;3.具有标记基因,便于进行筛选,四个基本步骤:,(三)基因操作的基本步骤,1)提取目的基因2)目的基因与运载体结合3)将目的基因导入受体细胞4)目的基因的检测和表达,目的基因,(三)基因操作的基本步骤,目的基因是人们所需要转移或改造的基因。,如苏云金芽孢杆菌的抗虫基因,还有植物的抗病(抗病毒、抗细菌)基因、种子贮藏蛋白的基因,以及人的胰岛素基因、干扰素基因等。,直
6、接分离基因人工合成基因,目的基因的提取方法,(三)基因操作的基本步骤,目的基因与运载体重组,1)用一定的限制酶切割质粒,使其出现一个切口,露出黏性末端。 2)用同一种限制酶切断目的基因,使其产生相同的黏性末端。 3)将切下的目的基因片段插入质粒的切口处,再加入适量DNA连接酶,形成了一个重组DNA分子(重组质粒),目的基因与运载体的结合过程,实际上是不同来源的基因重组的过程。,(三)基因操作的基本步骤,常用的受体细胞:,有大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌和动植物细胞等。,将目的基因导入受体细胞的原理,借鉴细菌或病毒侵染细胞的途径。,目的基因导入受体细胞,(三)基因操作的基本步骤,目的基因
7、的检测和表达,(三)基因操作的基本步骤,不能,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达。,受体细胞摄入DNA分子后就说明目的基因完成了表达吗?,若不能表达,要对抗虫基因再进行修饰。,?,思维拓展:,细菌和人是差异非常大的两种生物, 通过基因重组后,细菌能够合成人体的胰岛素,这说明了什么?,这可不是普通的细菌,它是嫁接了人胰岛素基因的工程菌,能大量合成人胰岛素。,人和细菌共用一套遗传密码,所有生物共用一套遗传密码,二、基因工程的应用,运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。,生长快、耐不良环境、肉质好的转基因鱼(
8、中国),乳汁中含有人生长激素的转基因牛(阿根廷),1、基因工程与作物育种,基因工程在农业上的应用,培育抗逆性品种 将细菌的抗虫、抗病毒、抗除草剂、抗盐碱、抗干旱、抗高温等抗性基因转移到作物体内,将从根本上改变作物的特性。如转基因抗虫棉。,抗虫基因作物的意义: 减少农药的用量,降低了生产的成本,减少了农药对环境的污染。,转黄瓜抗青枯病基因的甜椒,转黄瓜抗青枯病基因的马铃薯,不会引起过敏的转基因大豆,2002年,中国转基因棉花达到150万公顷,已经占到棉花产量的13.,我国大豆食用油近七成是“转基因”产品,与杂交育种、诱变育种相比较,基因工程育种的优点有哪些?,目的性强、克服远源杂交不亲和性、育种
9、周期短,基因工程在畜牧业的应用,繁殖具有抗病能力、高产仔率、高产奶率和高质量的皮毛等优良品质的转基因动物(如奶牛)。 该过程的重要步骤是重组DNA转移到动物受精卵中。,将人的生长激素基因和牛的生长素基因分别注射到小白鼠受精卵中,得到的“超级小鼠”。,2、基因工程与药物研制,我国生产的部分基因工程疫苗和药物,用基因工程的方法生产胰岛素、干扰素、白细胞介素、凝血因子、以及预防乙肝、霍乱、伤寒、疟疾等的疫苗。 提高生产产量、降低生产成本。,3、基因工程与环境保护, 环境监测:基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。,1t水中只有10个病毒也能被DNA探针检测出来,利用基因
10、工程培育的“指示生物”能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。, 环境污染治理:基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质。,通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。,三、转基因生物与转基因食品的安全性,两种观点不安全:证据 安全:证据,你们的观点?,安全观点: 1、转基因食品与非转基因食品的构成是一样的; 2、减少农药使用、减少环境污染; 3、节省生产成本,降低粮食售价; 4、增加食品营养、提高食品产量等。,不安全观
11、点: 1、可能产生抗除草剂的超级杂草; 2、可能使疾病的散播跨越物种障碍; 3、可能损害农作物的生物多样性; 4、认为创造新物种,可能干扰生态系统的稳定性; 5、可能产生新毒素和新过敏源。,(1)要将目的基因与运载体连接起来,在基因操作中应选用A、只需DNA连接酶B、同一种限制酶和DNA连接酶C、只需限制酶D、不同的限制酶和DNA连接酶,练 习,(2)下列各项中,说明目的基因完成了表达的是A、棉珠中含有杀虫蛋白基因B、大肠杆菌中具有胰岛素基因C、酵母菌中产生了干扰素D、抗病毒基因导入土豆细胞中,(3)有关基因工程的叙述正确的是 A、限制酶只在获得目的基因时才用 B、重组质粒的形成在细胞内完成
12、C、质粒都可作为运载体 D、蛋白质的结构可为合成目的基因提供资料,(4)有关基因工程的叙述中,错误的是 A、DNA连接酶将黏性末端的碱基对连接起来 B、 限制性内切酶用于目的基因的获得 C、目的基因须由运载体导入受体细胞 D、人工合成目的基因不用限制性内切酶,(5)要使目的基因与对应的载体重组,所需的两种酶是限制酶 连接酶 解旋酶 还原酶、 、 、 、(6)实施基因工程的第一步的一种方法是把所需的基因从供体细胞内分离出来,这要利用限制性内切酶。一种限制性内切酶能识别分子的顺序,切点在和之间,这是利用了酶的、高效性、专一性、多样性、催化活性易受外界影响,(8)不属于基因工程方法生产的药物是A、干
13、扰素 B、白细胞介素C、青霉素 D、乙肝疫苗,(7)基因工程的正确操作步骤是使目的基因与运载体结合将目的基因导入受体细胞检测目的基因的表达是否符合特定性状要求提取目的基因、 、 、,(9)采用基因工程的方法培育抗虫棉,下列导入目的基因的作法正确的是将毒素蛋白注射到棉受精卵中 将编码毒素蛋白的序列,注射到棉受精卵中将编码毒素蛋白的序列,与质粒重组,导入细菌,用该细菌感染棉的体细胞,在进行组织培养将编码毒素蛋白的序列,与细菌质粒重组,注射到棉的子房并进入受精卵中、 、 、 、 ,(11)在基因操作的基本步骤中,不进行碱基互补配对的A、人工合成目的基因B、目的基因与运载体结合C、将目的基因导入受体细胞D、目的基因的检测和表达,(10)转基因动物是指A、提供基因的动物B、基因组中增加外源基因的动物C、能产生白蛋白的动物D、能表达基因信息的动物,(12)下列各项中,与基因工程无关的是A、选择“工程菌”生产胰岛素B、培育转基因抗虫棉C、人工诱导多倍体D、利用DNA探针检测应用水是否含有病毒,(13)基因工程中常采用细菌、酵母菌等微生物作为受体细胞,原因是A、结构简单、操作方便 B、繁殖速度快C、遗传物质含量少 D、性状稳定,变异少,