收藏 分享(赏)

中考数学四边形与证明课件.ppt.ppt

上传人:无敌 文档编号:1361913 上传时间:2018-07-03 格式:PPT 页数:27 大小:868KB
下载 相关 举报
中考数学四边形与证明课件.ppt.ppt_第1页
第1页 / 共27页
中考数学四边形与证明课件.ppt.ppt_第2页
第2页 / 共27页
中考数学四边形与证明课件.ppt.ppt_第3页
第3页 / 共27页
中考数学四边形与证明课件.ppt.ppt_第4页
第4页 / 共27页
中考数学四边形与证明课件.ppt.ppt_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、中考复习,准备好了吗?,时刻准备着!,2008年,二、空间与图形,课程标准及学习目标,(5)四边形 探索并了解多边形的内角和与外角和公式,了解正多边形的概 念。 掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。 探索并掌握平行四边形的有关性质1和四边形是平行四边形的条件2。 探索并掌握矩形、菱形、正方形的有关性质3和四边形是矩形、菱形、正方形的条件4,探索并了解等腰梯形的有关性质5和四边形是等腰梯形的条件6。 探索并了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心)。 通过探索平面图形的镶嵌,知道任意一

2、个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。,【备注2】: 1平行四边形的对边相等、对角相等、对角线互相平分。 2一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形。 3矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直平分。,4三个角是直角的四边形,或对角线相等的平行四边形是矩形;四边相等的四边形,或对角线互相垂直的平行四边形是菱形。 5等腰梯形同一底上的两底角相等,两条对角线相等。 6同一底上的两底角相等的梯形是等腰梯形。,(1)了解证明的含义 理解证明的必要性。 通过具体的例子,了解定义、命题、定理的含义,会区分

3、命题的条件(题设)和结论。 结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立。 通过具体的例子理解反例的作用,知道利用反例可以证明一个命题是错误的。 通过实例,体会反证法的含义。 掌握用综合法证明的格式,体会证明的过程要步步有据。,4图形与证明,(2)掌握以下基本事实,作为证明的依据 一条直线截两条平行直线所得的同位角相等。 两条直线被第三条直线所截,若同位角相等,那么这两条直线平行。 若两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,则这两个三角形全等。 全等三角形的对应边、对应角分别相等。,(3)利用(2)中的基本事实证明下列命题1 平行线

4、的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线平行)。 三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角)。 直角三角形全等的判定定理。 角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心)。,垂直平分线性质定理及逆定理;三角形的三边的垂直平分线交于一点(外心)。 三角形中位线定理。 等腰三角形、等边三角形、直角三角形的性质和判定定理。 平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理。 (4)通过对欧几里得原本的介绍,感受几何的演绎体系对数学发展和人类文明的价值。,四边形一、四边形的

5、分类及转化二、几种特殊四边形的性质三、几种特殊四边形的常用判定方法四、中心对称图形与中心对称的区别和联系五、有关定理六、主要画图七、典型举例,一、四边形的分类及转化,两组对边平行,一组对边平行另一组对边不平行,平行且相等,平行且相等,平行且四边相等,平行且四边相等,两底平行两腰相等,对角相等邻角互补,四个角都是直角,同一底上的角相等,对角相等邻角互补,四个角都是直角,互相平分,互相平分且相等,互相垂直平分,且每一条对角线平分一组对角,相等,互相垂直平分且相等,每一条对角线平分一组对角,中心对称图形,中心对称图形轴对称图形,中心对称图形轴对称图形,中心对称图形轴对称图形,轴对称图形,二、几种特殊

6、四边形的性质:,三、几种特殊四边形的常用判定方法:,1、定义:两组对边分别平行 2、两组对边分别相等3、一组对边平行且相等 4、对角线互相平分,1、定义:有一外角是直角的平行四边形 2、三个角是直角的四边形3、对角线相等的平行四边形,1、定义:一组邻边相等的平行四边形 2、四条边都相等的四边形3、对角线互相垂直的平行四边形,1、定义:一组邻边相等且有一个角是直角的平行四边形2、有一组邻边相等的矩形 3、有一个角是直角的菱形,1、两腰相等的梯形 2、在同一底上的两角相等的梯形 3、对角线相等的梯形,四、中心对称图形与中心对称的区别和联系,中心对称图形:,中心对称:,如果把一个图形绕着某一点旋转1

7、80后与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。,如果把一个图形绕着某一点旋转180后与另一个图形重合,那么这两个图形关于这个点中心对称,这个点叫做对称中心。,C,A,B,1、中心对称的两个图形是全等图形2、中心对称的两个图形的对称点连线通过对称中心,且被对称中心平分,中心对称图形的对称点连线通过对称中心,且被对称中心平分,o,o,五、有关定理:,平行,360,(n - 2)180,360,两底和的一半,360,条件:在梯形ABCD中,EF是中位线,3、两条平行线之间的距离以及性质:,平行线段,两条平行线,两条平行线中,一条直线上任意一点到另一条直线的距离,叫这两条平

8、行线的距离。,条件:ADBECF,AB=BC,结论:DE=EF,条件:在ABC中,AD= BD , DEBC,结论:AE=EC,条件:在梯形ABCD中,AE=DE ,ABEFDC,结论:BF=FC,相等,第三边的中点,另一腰的中点,六、主要画图:,1、画平行四边形、矩形、菱形、正方形、等腰梯形,如:画一个平行四边形ABCD,使边BC=5cm,对角线AC=5cm,BD=8cm.,2、用平行线等分线段,C,如图:点C就是线段AB的中点,如图:点D、E、F、H就是线段AB的五等分点,七、典型举例:,证明:,四边形ABCD是平行四边形,BE=DF,四边形AFCE是平行四边形,注:利用平行四边形的性质来

9、证明线段或角相等是一种常用方法。,E=F,例2:如图,在四边形ABCD中,AB=2,CD=1,A=60, B= D=90 ,求四边形ABCD的面积。,E,注:四边形的问题经常转化为三角形的问题来解,转化的方法是添加适当的辅助线,如连结对角线、延长两边等。,解:,延长AD,BC交于点E,,在RtABE中,A=60,,E=30,又AB=2,在RtCDE中,同理可得,S四边形ABCD=S RtABE - S RtCDE,2,1,例3:如图,在梯形ABCD中,ABCD,中位线EF=7cm,对角线ACBD,BDC=30,求梯形的高线AH,析:求解有关梯形类的题目,常需添加辅助线,把问题转化为三角形或四边

10、形来求解,添加辅助线一般有下列所示的几种情况:,延长两腰,M,解:,过A作AMBD,交CD的延长线于M,又ABCD,四边形ABDM是平行四边形,,DM=AB,AMC= BDC=30,又中位线EF=7cm,,CM=CD+DM=CD+AB=2EF=14cm,又ACBD,,ACAM,,AHCD,ACD=60,注:解“翻折图形”问题的关键是要认识到对折时折痕为重合两点的对称轴,会形成轴对称图形。本题通过设未知数,然后根据图形的几何元素间的关系列方程求解的方法,是数学中常用的“方程思想”。,解:,设折痕为EF,连结AC,AE,CF,若A,C两点重合,它们必关于EF对称,则EF是AC的中垂线 ,故AF=FC,设AC与EF交于点O,AF=FC=xcm,答:折痕的长为7.5cm,则FD=AD AF=8 - x,EF=7.5(负根舍去),作FHBC于H,解法2,祝同学们:金榜题名!,愿我们:心想事成!,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经济财会 > 贸易

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报