收藏 分享(赏)

《数列》课件2(苏教版必修5).ppt

上传人:无敌 文档编号:1356456 上传时间:2018-07-02 格式:PPT 页数:21 大小:951KB
下载 相关 举报
《数列》课件2(苏教版必修5).ppt_第1页
第1页 / 共21页
《数列》课件2(苏教版必修5).ppt_第2页
第2页 / 共21页
《数列》课件2(苏教版必修5).ppt_第3页
第3页 / 共21页
《数列》课件2(苏教版必修5).ppt_第4页
第4页 / 共21页
《数列》课件2(苏教版必修5).ppt_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、数 列 1, 2, 3, 4, 5, n, .( 1) 1, , , , , , . ( 2) n1213141511, 1.4, 1.41, 1.414, . ( 3) 4, 5, 6, 7, 8, 9, 10. ( 4) 1, 1, 1, 1, . ( 5) 1, 1, 1, 1, . ( 6) 4 1 4 2 1.12 定义: 按一定顺序排列的一列数叫 数列 。 数列中的每一个数叫做这个数列的 项 。 各项依次叫做这个数列的 第 1项(首项) ,第 2项 , , 第 n项 , 。 根据数列的定义知数列是按一定顺序排列的一列数,因此若数列中被排列的数相同,但次序不同,则不是同一数列。 如:

2、 数列( 4) 4, 5, 6, 7, 8, 9, 10。改为 数列( 4) 10, 9, 8, 7, 6, 5, 4。 它们不是同一数列。 又如:数列( 5) 1, 1, 1, 1, 。改为 数列( 5) 1, 1, 1, 1, 。 则它们也不是同一数列。 数列中的每一个数都对应着一个序号,反过来,每个序号也都对应着一个数。如数列( 4) 项 4 5 6 7 8 9 10 序号 1 2 3 4 5 6 7 这说明:数列的项是序号的函数,序号从 1开始依次增加时,对应的函数值按次序排出就是数列,这就是数列的实质。 数列的一般形式可以写成: , 321 naaaa如数列( 2) ,1,31,21

3、,1 n 可简记为 n1其中 是数列的第 n项,上面的数列又可简记为 nana如数列( 1) 1, 2, 3, 4, 5, 可简记为 nnna n 如数列( 1) na n 1如数列( 2) )7(3 nna n如数列( 4) 如果数列 的第 项 与 之间的函数关系可以用一个公式来表示,这个公式就叫做这个数列的 通项公式 。 na nann一个数列,它的项数可以是有限的也可以是无限的,根据数列的项数是有限的还是无限的,数列又分为有穷数列和无穷数列。我们规定: 项数有限的数列叫做 有穷数列 项数无限的数列叫做 无穷数列 如数列( 4)是有穷数列 如数列( 1)、( 2)、( 3)、( 5)、( 6)都是无穷数列。 O 1 2 3 4 5 6 7 10 9 8 7 6 5 4 3 2 1 nan数列( 4) 用图象表示: 哇!图象也可以是一些点呀! 1 O 1 2 3 4 5 6 7 n 214181na数列( 2)用图象表示

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报