1、圆锥曲线与方程,2.1圆锥曲线,古希腊数学家Dandelin在圆锥截面的两侧分别放置一球,使它们都与截面相切(切点分别为F1,F2),又分别与圆锥面的侧面相切(两球与侧面的公共点分别构成圆O1和圆O2)过M点作圆锥面的一条母线分别交圆O1,圆O2与P,Q两点,因为过球外一点作球的切线长相等,所以MF1 = MP,MF2 = MQ,,MF1 + MF2 MP + MQ PQ定值,椭圆的定义:,可以用数学表达式来体现:,设平面内的动点为M,有(2a 的常数),平面内到两定点 , 的距离和等于常数(大于 )的点的轨迹叫做椭圆,,两个定点 , 叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。,椭圆形成演
2、示椭圆定义.gsp,思考: 在椭圆的定义中,如果这个常数小于或等于 ,动点M的轨迹又如何呢?,思考:是否平面内到两定点之间的距离和为定长的点的轨迹就是椭圆?,结论:(若 PF1PF2为定长)当动点到定点F1、F2距离PF1、PF2满足PF1PF2 F1F2时,P点的轨迹是椭圆。)当动点到定点F1、F2距离PF1、PF2满足PF1PF2 F1F2时,P点的轨迹是一条线段F1F2 。为什么.gsp)当动点到定点F1、F2距离PF1、PF2满足PF1PF2 F1F2时,点没有轨迹。,双曲线的定义:,两个定点 , 叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。,平面内到两定点 , 的距离的差的绝对
3、值等于常数(小于 )的点的轨迹叫做双曲线,,可以用数学表达式来体现:,设平面内的动点为M,有(02a |F1F2| ;条件Q:动点M的轨迹以F1,F2为焦点的椭圆,则P是Q的( )条件A.充分不必要 B。必要不充分 C.充要 D.既不充分也不必要,例2如图:一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于P,则点P的轨迹是( )A.椭圆 B.双曲线C.抛物线 D.圆为什么.gsp,C,A,例3一动圆过定点A(-4,0),且与定圆B:(x-4)2+y2=16相外切,则动圆的圆心轨迹为( ),变式:过点A(3,0)且与y轴相
4、切的动圆圆心的轨迹为( )A.椭圆 B.双曲线 C.抛物线 D.圆,双曲线右支,C,例4(1)已知F1,F2为定点,F1F24,动点M满足MF1+MF2=4,则动点的轨迹是() A.椭圆 B.双曲线 C.抛物线 D.线段(2)到两定点A(4,0),B(-4,0)的距离之差的绝对值是8的轨迹是,D,两条射线,1、已知ABC中,B(-3,0),C(3,0),且AB,BC,AC成等差数列。(1)求证:点A在一个椭圆上运动; (2)写出这个椭圆的焦点坐标。,解:(1)根据条件有AB+AC=2BC, 即AB+AC=12, 即动点A到定点B,C的距离之和为定值12, 且126BC,,所以点A在以B,C为焦点的一个椭圆上运动.,(2)这个椭圆的焦点坐标分别为(-3,0),(3,0),练习,练习2、已知ABC中,BC长为6,周长为16,那么顶点A在怎样的曲线上运动?,小结:,1.三种圆锥曲线的形成过程,2.椭圆的定义,3.双曲线的定义,4.抛物线的定义,