1、二次曲线专题(一),二次曲线专题复习(一),附录,二次曲线发展史,目标诊断题,纲要信号图表,学习导航与要求,概念的精细化,曲线的个性与共性,技巧与题型归类,圆,椭圆,双曲线,双曲线,抛物线,双曲线定义的盲点,双曲线的渐近线,离心率分析,直线与双曲线关系,几种曲线定义,一般二次方程的讨论,曲线与方程,Excel作图,曲线的切线,观看网上动态曲线,圆的学习要求和导航,学习要求:掌握由圆的定义推导圆的标准方程,理解参数 a,br的几何意义,掌握一般方程和标准方程的互化,用圆方程解决有关问题,解决直线与圆、圆与圆的位置关系。学习导航:圆的定义与标准方程 圆的几何定义 几何量间的关系d(P,M)=r 代
2、数等式 (x-a)2+(y-b)2=r2 ,a,b,r的意义。由(x-a)2+(y-b)2=r2 x2+y2+Dx+Ey+F=0 且与Ax2+Bxy+Cy2+Dx+Ey+F=0比较,得出圆方程A=C0,B=0, 且D2+E2-4F0x2+y2+Dx+Ey+F=0的圆心(-D/2,-E/2)半径 r= 圆与直线的关系,圆心M(a,b),半径r直线 Ax+By+C=0,dr相离,d=r相切,db0,c2=a2-b2,(e=c/a)必须牢固掌握。椭圆的性质(有心、封闭的曲线),椭圆曲线的范围,掌握曲线(椭圆)对称性的判别,与坐标轴的交点。特别:1.椭圆的焦点一定在长轴上,2. a,b,c三个参数的关
3、系是满足以 a为斜边的 直角三角形勾股定理a2=b2+c2。3.标准方程中a对应的变量x(或y),表明焦点就在x轴(或y轴)。,直线与椭圆的位置关系:把直线与椭圆的方程组消元后得一元二次方程,它的判别式0直线与椭圆相交=0直线与椭圆相切 0离心率取值范围:椭圆:2c2a,得 e1,按抛物线定义,e=1。离心率与圆周率是几何中的两大比率,它们的共同特点:均为两个定量的有序之比,区别在于前者适用于二次曲线,后者只适用于圆;e值有相对的任意性(可变),却具有唯一性(无理常数)。离心率深刻揭示了二次曲线的实质,沟通了它们的关系。椭圆,双曲线,抛物线三者关系密切,是同一定义,下的不同表现。三种曲线可统一
4、定义为:平面内到一定点和一定直线的距离之比等于常数e的动点轨迹叫二次曲线。建立适当的坐标,轨迹上任一点M(x,y),定点F(p,0)所以 整理即得(1-e2)x2+y2-2px+p2=0当01方程分别是椭圆,抛物线,双曲线。“对立统一,量变到质变”e 0椭圆 圆,e 1,椭圆变得愈来愈扁,e=1为抛物线,e1为双曲线,e 增大,则b/a= 也变大,双曲线开口变大,反之,开口变小。 E趋向于1时,渐近线倾斜角近于0。,回主页,圆锥曲线(圆锥截线),点(点圆),圆,椭圆,双曲线,抛物线,圆锥曲线退化为两条直线,,一条直线,你能说出截面的条件吗?,圆锥的顶角影响曲线形状吗?,回主页,继续,二次曲线的
5、发展史,公元前四世纪,古希腊学者梅纳科莫斯最早通过截割圆锥的方法得到三种不同类型的曲线椭圆(圆)、双曲线、抛物线,统称圆锥曲线。许多学者继续研究这一课题,最有成就的是生于小亚细亚佩加城的阿波罗尼,他将自已的成果写成八大卷的圆锥曲线论,成为这一课题的经典文献。十六世纪,著名天文学家开普勒发现行星按椭圆形轨道运行,著名天文学家伽里略证明了不计阻力的斜抛运动的轨迹是抛物线。这说明了圆锥曲线并不是附生于圆锥之上的静态曲线,而是自然界中物体常见的运动形式。,1629年,法国数学家费马在平面和立体轨迹引论一书中,运用斜角坐标研究圆锥曲线,证明了圆锥曲线的方程都是含有二个未知数且最高次幂是二次的方程。反之,
6、一般二元二次方程点的轨迹是圆锥曲线。1655年,英国数学家沃利斯在圆锥截线论中,干脆把圆锥曲线叫作二次曲线。1748年,著名数学家欧拉在无穷小分析引论一文中,详细讨论了形如:Ax2+Bxy+Cy2+Dx+Ey+F=0的一般二次方程,证明经过平移、转轴变换,任何一个二次方程可以化为椭圆(圆)、双曲线、抛物线及它们的退化形式,所以二次曲线就是圆锥曲线。,回主页,椭圆双曲线抛物线基本性质,回主页,一些常用技能技巧的梳理,在巩固求曲线方程、应用曲线方程的基础上,练习常用的技能技巧,提高解题能力。建立适当的坐标系 应用解几方法解题,必须建立坐标系,而且选定恰当的坐标系(一般是以原点、坐标轴对称的,或以原
7、点为起点),简化曲线方程。2.充分利用圆锥曲线特有的几何性质。例如:m为何值时,直线2x-y+m=0和圆x2+y2=5无公共点?截得弦长为2?交点处两条半径互相垂直?解:圆心(0,0)到直线距离d=圆半径r= , 时即m5时圆和直线无公共点。弦过中点的半径垂直于弦r2-d2=1即5-m2/5=1当m= 时圆在直线上截得弦长为2 此时弦与过,弦两端的半径组成等腰直角三角形时过弦两端的半径互相垂直。3 .圆锥曲线定义的应用有些题目从表象上看较难,但用圆锥曲线定义解题,问题迎刃而解。,继续,一些常用技能技巧的梳理,如图双曲线方程 的左焦点作弦交曲线于A,B,连接AF2和 BF2,求|AF2|+|BF
8、2|-|AB| 的值解:|AF2|-|AF1|=2a=8, |BF2|-|BF1|=2a=8, |AF2|+|BF2|-|AB| 的值为16。曲线系方程的应用方程f1(x,y)+f2(x,y)=0表示的曲线经过曲线f1(x,y)=0和曲线f2(x,y)=0的交点,(A1x+B1y+C1)+(A2x+B2y+C2)=0表示过直线A1x+B1y+C1=0,A2x+B2y+C2=0的 交点的一系列直线。你能写出圆系列方程和双曲线系列方程吗?例题:一个圆经过已知圆x2+y2-x+y-2=0和x2+y2=5的交点,且圆心在直线3x+4y-1=0上求圆方程。解:设所求圆方程为( x2+y2-x+y-2)+
9、 (x2+y2-5)=0即(1+)x2+(1+)y2-x+y-(2+)=0其圆心为(1/(2+2),-1/(2+2)在已知直线上,得=-1.5,所求方程为:X2+y2+2x-2y-11=0,前一页,继续,一些常用技能技巧的梳理,韦达定理的应用:例题1:已知直线l 过(1,0)点,倾斜角为/4,求 l在椭圆x2+2y2=4 上截得的长?解:直线方程为y=x-1代入椭圆方程x2+2y2=4 ,得3 x2 -4x-2=0设所截交点为AB |AB|2 =(x2-x1)2+(y2-y1)2 =2(x2-x1)2 =2(x2+x1)2 -4 x2x1 ) =80/9 |AB|=,回主页,继续,一般二次方程的讨论,一般二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0经过旋转变换,适当选取角,化成Ax2+Cy2+Dx+Ey+F=0关键看AC是否有一个为零?都不为零时它们是同号还是异号来决定。经过变换,-4AC=B2-4AC。= B2-4AC为二次方程判别式。,回主页,再见,