收藏 分享(赏)

福建省仙游县高中人教a版数学选修2-1课件:2.1.2椭圆的几何性质(1).ppt

上传人:无敌 文档编号:1349990 上传时间:2018-06-30 格式:PPT 页数:19 大小:359.50KB
下载 相关 举报
福建省仙游县高中人教a版数学选修2-1课件:2.1.2椭圆的几何性质(1).ppt_第1页
第1页 / 共19页
福建省仙游县高中人教a版数学选修2-1课件:2.1.2椭圆的几何性质(1).ppt_第2页
第2页 / 共19页
福建省仙游县高中人教a版数学选修2-1课件:2.1.2椭圆的几何性质(1).ppt_第3页
第3页 / 共19页
福建省仙游县高中人教a版数学选修2-1课件:2.1.2椭圆的几何性质(1).ppt_第4页
第4页 / 共19页
福建省仙游县高中人教a版数学选修2-1课件:2.1.2椭圆的几何性质(1).ppt_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、2.1.2椭圆的简单几何性质(1),复习:,1.椭圆的定义:,到两定点F1、F2的距离之和为常数(大于|F1F2 |)的动点的轨迹叫做椭圆。,2.椭圆的标准方程是:,3.椭圆中a,b,c的关系是:,a2=b2+c2,当焦点在X轴上时,当焦点在Y轴上时,1、椭圆的方程中x与y的取值是否有限?,探究:,2、椭圆在坐标平面中的图形与x、y有什么关系?,二、椭圆 简单的几何性质,-axa, -byb 知 椭圆落在x=a,y= b组成的矩形中,1、范围:,椭圆的对称性,2、对称性:,从图形上看,椭圆关于x轴、y轴、原点对称。从方程上看:(1)把x换成-x方程不变,图象关于y轴对称;(2)把y换成-y方程

2、不变,图象关于x轴对称;(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。,3、椭圆的顶点,令 x=0,得 y=?,说明椭圆与 y轴的交点?令 y=0,得 x=?说明椭圆与 x轴的交点?,*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。a、b分别叫做椭圆的长半轴长和短半轴长。,根据前面所学有关知识画出下列图形,(1),(2),A1,B1,A2,B2,B2,A2,B1,A1,4、椭圆的离心率e(刻画椭圆扁平程度的量),离心率:椭圆的焦距与长轴长的比:,叫做椭圆的离心率。,1离心率的取值范围:,2离心率对椭圆形状

3、的影响:,0eb,a2=b2+c2,|x| a,|y| b,关于x轴、y轴成轴对称;关于原点成中心对称,(a,0)、(-a,0)、(0,b)、(0,-b),(c,0)、(-c,0),长半轴长为a,短半轴长为b. ab,a2=b2+c2,|x| b,|y| a,同前,(b,0)、(-b,0)、(0,a)、(0,-a),(0 , c)、(0, -c),同前,同前,同前,例1已知椭圆方程为9x2+25y2=225,它的长轴长是: 。短轴长是: 。焦距是: 。 离心率等于: 。焦点坐标是: 。顶点坐标是: 。 外切矩形的面积等于: 。,10,6,8,60,解题的关键:1、将椭圆方程转化为标准方程 明确

4、a、b,2、确定焦点的位置和长轴的位置,练习:已知椭圆 的离心率 求m的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标。,练习求下列椭圆的长轴长、短轴长、焦点坐标、顶点坐标和离心率。(1)x2+9y2=81 (2) 25x2+9y2=225 (3) 16x2+y2=25 (4) 4x2+5y2=1,例2求适合下列条件的椭圆的标准方程经过点P(3,0)、Q(0,2);长轴长等于20,离心率3/5。一焦点将长轴分成:的两部分,且经过点,解: 方法一:设方程为mx2ny21(m0,n0,mn),将点的坐标方程,求出m1/9,n1/4。,方法二:利用椭圆的几何性质,以坐标轴为对称轴的椭圆与坐标轴的交点就

5、是椭圆的顶点,于是焦点在x轴上,且点P、Q分别是椭圆长轴与短轴的一个端点,故a3,b2,所以椭圆的标准方程为,注:待定系数法求椭圆标准方程的步骤: 定位; 定量,或,或,练习:1. 根据下列条件,求椭圆的标准方程。 长轴长和短轴长分别为8和6,焦点在x轴上 长轴和短轴分别在y轴,x轴上,经过P(-2,0), Q(0,-3)两点.一焦点坐标为(3,0)一顶点坐标为(0,5)两顶点坐标为(0,6),且经过点(5,4)焦距是12,离心率是0.6,焦点在x轴上。,2. 已知椭圆的一个焦点为F(6,0)点B,C是短轴的两端点,FBC是等边三角形,求这个椭圆的标准方程。,例3:(1)椭圆 的左焦点 是两个

6、顶点,如果到直线AB的距 离为 ,则椭圆的离心率e= .(3)设M为椭圆 上一点, 为椭圆的焦点, 如果 ,求椭圆的离心率。,小结:,本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他的两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我们认识并熟练掌握数与形的联系。在本节课中,我们运用了几何性质,待定系数法来求解椭圆方程,在解题过程中,准确体现了函数与方程以及分类讨论的数学思想。,3、P为椭圆 上任意一点,F1、F2是焦点, 求F1PF2的最大值.,作业:,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报