收藏 分享(赏)

数学:1.1.1《任意角的概念》课件(新人教a版).ppt

上传人:无敌 文档编号:1348550 上传时间:2018-06-30 格式:PPT 页数:25 大小:150.50KB
下载 相关 举报
数学:1.1.1《任意角的概念》课件(新人教a版).ppt_第1页
第1页 / 共25页
数学:1.1.1《任意角的概念》课件(新人教a版).ppt_第2页
第2页 / 共25页
数学:1.1.1《任意角的概念》课件(新人教a版).ppt_第3页
第3页 / 共25页
数学:1.1.1《任意角的概念》课件(新人教a版).ppt_第4页
第4页 / 共25页
数学:1.1.1《任意角的概念》课件(新人教a版).ppt_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、1.1.1 任意角的概念,1、角的概念,初中是如何定义角的? 从一个点出发引出的两条射线构成的几何图形. 这种概念的优点是形象、直观、容易理解,但它是从图形形状来定义角,因此角的范围是0, 360), 这种定义称为静态定义,其弊端在于“狭隘”.,生活中很多实例会不在该范围。 体操运动员转体720,跳水运动员向内、向外转体1080; 经过1小时,时针、分针、秒针各转了多少度? 这些例子不仅不在范围0, 360) ,而且方向不同,有必要将角的概念推广到任意角, 想想用什么办法才能推广到任意角? 关键是用运动的观点来看待角的变化。,2角的概念的推广,“旋转”形成角 一条射线由原来的位置OA,绕着它的

2、端点O按逆时针方向旋转到另一位置OB,就形成角 旋转开始时的射线OA叫做角的始边,旋转终止的射线OB叫做角的终边,射线的端点O叫做角的顶点,“正角”与“负角”、“0角” 我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA为始边的角=210,=150,=660,,特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零度角(0) 角的记法:角或可以简记成.,角的概念扩展的意义:,用“旋转”定义角之后,角的范围大大地扩大了, 角有正负之分; 如:=210, = 150, =660. 角可以任意大; 实例:体操动作:旋转2周(3602

3、=720) 3周(3603=1080) 还有零角, 一条射线,没有旋转.,角的概念推广以后,它包括任意大小的正角、负角和零角 要注意,正角和负角是表示具有相反意义的旋转量,它的正负规定纯属于习惯,就好象与正数、负数的规定一样,零角无正负,就好象数零无正负一样,用旋转来描述角,需要注意三个要素(旋转中心、旋转方向和旋转量),(2)旋转方向:旋转变换的方向分为逆时针和顺时针两种,这是一对意义相反的量,根据以往的经验,我们可以把一对意义相反的量用正负数来表示,那么许多问题就可以解决了;,(1)旋转中心:作为角的顶点.,(3)旋转量: 当旋转超过一周时,旋转量即超过360,角度的绝对值可大于360 .

4、于是就会出现720 , 540等角度.,3“象限角”,为了研究方便,我们往往在平面直角坐标系中来讨论角。 角的顶点重合于坐标原点,角的始边重合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限) 例如:30、390、330是第象限角, 300、 60是第象限角, 585、1300是第象限角, 135 、2000是第象限角等,4终边相同的角, 观察:390,330角,它们的终边都与30角的终边相同.,探究:终边相同的角都可以表示成一个0到360的角与k(kZ)个周角的和: 390=30+360(k=1), 330=3036

5、0 (k=1) 30=30+0360 (k=0), 1470=30+4360(k=4) 1770=305360 (k=5), 结论: 所有与终边相同的角连同在内可以构成一个集合:| =+k360(kZ) 即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和,注意以下四点: kZ; 是任意角; k360与之间是“+”号,如k36030,应看成k360+(30); 终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360的整数倍.,例1. 在0到360范围内,找出与下列各角终边相同的角,并判断它是哪个象限的角.(1) 120;(2) 640;(3) 9501

6、2.,解:120=360+240, 240的角与120的角终边相同, 它是第三象限角 640=360+280, 280的角与640的角终边相同, 它是第四象限角, 95012=3360+12948, 12948的角与95012的角终边相同, 它是第二象限角,例2. 写出与下列各角终边相同的角的集合S,并把S中在360720间的角写出来: (1) 60;(2) 21;(3) 36314.,解:(1) S=| =k360+60 (kZ) , S中在360720间的角是 1360+60=280; 0360+60=60; 1360+60=420,(2) S=| =k36021 (kZ) S中在3607

7、20间的角是 036021=21; 136021=339; 236021=699,(3) | =k360+ 36314 (kZ) S中在360720间的角是 2360+36314=35646; 1360+36314=314; 0360+36314=36314,课堂练习,1锐角是第几象限的角?第一象限的角是否都是锐角?小于90的角是锐角吗?区间(0,90)内的角是锐角吗?,答:锐角是第一象限角;第一象限角不一定是锐角;小于90的角可能是零角或负角,故它不一定是锐角;区间(0,90)内的角是锐角,2已知角的顶点与坐标系原点重合,始边落在x轴的正半轴上,作出下列各角,并指出它们是哪个象限的角?(1)

8、420,(2) 75,(3)855,(4) 510,答:(1)第一象限角; (2)第四象限角, (3)第二象限角, (4)第三象限角.,3、已知,角的终边相同,那么的终边在( ) A x轴的非负半轴上 B y轴的非负半轴上 C x轴的非正半轴上 D y轴的非正半轴上,A,4、终边与坐标轴重合的角的集合是( ) A |=k360 (kZ) B |=k180 (kZ) C |=k90 (kZ) D |=k180+90 (kZ) ,C,5 、已知角2的终边在x轴的上方,那么是( ) A 第一象限角 B 第一、二象限角 C 第一、三象限角 D 第一、四象限角,C,6、若是第四象限角,则180是( ) A 第一象限角 B 第二象限角 C 第三象限角 D 第四象限角,C,7、在直角坐标系中,若与终边互相垂直,那么与之间的关系是( ) A. =+90o B =90o C =k360o+90o+,kZ D =k360o90o+, kZ,D,8、若90135,则的范围是_,+的范围是_;,(0,45),(180,270),9、若的终边与60角的终边相同,那么在0,360范围内,终边与角 的终边相同的角为_;,解:=k360+60,kZ.,所以 =k120+20, kZ.,当k=0时,得角为20,,当k=1时,得角为140,,当k=2时,得角为260.,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报