1、新课标人教版课件系列,高中数学必修1,1.3.1-2函数的最大(小)值,教学目标,使学生掌握增函数、减函数、单调区间的概念,会根据图象说出函数的单调区间,并指出在单调区间内函数的增减性。会证明函数的单调性。 教学重点: 根据函数图象说出函数的单调区间,并指出增减性。 教学难点: 函数单调性的证明。,画出下列函数的草图,并根据图象解答下列问题:,1 说出y=f(x)的单调区间,以及在各单调区间上的单调性;2 指出图象的最高点或最低点,并说明它能体现函数的什么特征?,(1) (2),1最大值,一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:,(1)对于任意的xI,都有f(x)M; (2
2、)存在x0I,使得f(x0) = M,那么,称M是函数y=f(x)的最大值,2最小值,一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:,(1)对于任意的xI,都有f(x)M; (2)存在x0I,使得f(x0) = M,那么,称M是函数y=f(x)的最小值,2、函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的xI,都有f(x)M(f(x)M),注意:,1、函数最大(小)值首先应该是某一个函数值,即存在x0I,使得f(x0) = M;,例3、“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂. 如果在距地面高度h m与时间t s之间的关系为:h(t)= -
3、4.9t2+14.7t+18 ,那么烟花冲出后什么时候是它的爆裂的最佳时刻?这时距地面的高度是多少(精确到1m),解:作出函数h(t)= -4.9t2+14.7t+18的图象(如图).显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.,由于二次函数的知识,对于h(t)=-4.9t2+14.7t+18,我们有:,于是,烟花冲出后1.5秒是它爆裂的最佳时刻,这时距地面的高度为29 m.,例3.求函数 在区间2,6上的最大值和最小值,解:设x1,x2是区间2,6上的任意两个实数,且x10,于是,所以,函数 是区间2,6上的减函数.,因此,函数
4、在区间2,6上的两个端点上分别取得最大值和最小值,即在点x=2时取最大值,最大值是2,在x=6时取最小值,最小值为0.4 .,(二)利用函数单调性判断函数的最大(小)值的方法,1.利用二次函数的性质(配方法)求函数的最大(小)值,2. 利用图象求函数的最大(小)值,3.利用函数单调性的判断函数的最大(小)值,如果函数y=f(x)在区间a,b上单调递增,则函数y=f(x)在x=a处有最小值f(a),在x=b处有最大值f(b) ;,如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b);,课堂练习,1、函数f(x)=x2+4ax+2在区间(-,6内递减,则a的取值范围是( )A、a3 B、a3C、a-3 D、a-3,D,2、在已知函数f(x)=4x2-mx+1,在(-,-2上递减,在-2,+)上递增,则f(x)在1,2上的值域_.,21,39,归纳小结,1、函数的最大(小)值及其几何意义,2、利用函数的单调性求函数的最大(小)值,再见,