收藏 分享(赏)

【创新设计-课堂讲义】高中数学(人教a版选修2-2)配套课件:第1章1.4生活中的优化问题举例.ppt

上传人:无敌 文档编号:1340911 上传时间:2018-06-27 格式:PPT 页数:42 大小:1.48MB
下载 相关 举报
【创新设计-课堂讲义】高中数学(人教a版选修2-2)配套课件:第1章1.4生活中的优化问题举例.ppt_第1页
第1页 / 共42页
【创新设计-课堂讲义】高中数学(人教a版选修2-2)配套课件:第1章1.4生活中的优化问题举例.ppt_第2页
第2页 / 共42页
【创新设计-课堂讲义】高中数学(人教a版选修2-2)配套课件:第1章1.4生活中的优化问题举例.ppt_第3页
第3页 / 共42页
【创新设计-课堂讲义】高中数学(人教a版选修2-2)配套课件:第1章1.4生活中的优化问题举例.ppt_第4页
第4页 / 共42页
【创新设计-课堂讲义】高中数学(人教a版选修2-2)配套课件:第1章1.4生活中的优化问题举例.ppt_第5页
第5页 / 共42页
点击查看更多>>
资源描述

1、 1.4 生活中的优化问题举例,第一章导数及其应用,1.了解导数在解决实际问题中的作用.2.掌握利用导数解决实际生活中简单的优化问题.3.学会建立数学模型,并会求解数学模型.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一利用导数解决生活中的优化问题的步骤,1.分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系 yf(x);2.求函数的导数 f(x),解方程 f(x)0;3.比较函数在区间端点和在 f(x)0的点的函数值的大小,最大(小)者为最大(小)值.,答案,思考(1)什么是优化问题?,答案在

2、生活中,人们常常遇到求使经营利润最大、用料最省、费用最少、生产效率最高等问题,这些问题通常称为优化问题.,(2)优化问题的常见类型有哪些?,答案费用最省问题,利润最大问题,面积、体积最大问题等.,知识点二解决优化问题的基本思路,思考解决生活中优化问题应注意什么?,答案(1)当问题涉及多个变量时,应根据题意分析它们的关系,列出变量间的关系式;(2)在建立函数模型的同时,应根据实际问题确定出函数的定义域;(3)在实际问题中,由 f(x)0常常得到定义域内的根只有一个,如果函数在这点有极大值(极小值),那么不与端点处的函数值比较,也可以判断该极值就是最大值(最小值);(4)求实际问题的最大(小)值时

3、,一定要从问题的实际意义去考查,不符合实际意义的应舍去,例如,长度、宽度应大于0,销售价格为正数等.,返回,答案,题型探究 重点突破,题型一利润最大问题,解析答案,例1某商品每件成本9元,售价30元,每星期卖出432件.如果降低售价,销售量就会增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元/件,0x21)的平方成正比.已知每件商品的售价降低2元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成关于x的函数;,解若每件商品单价降低x元,则一个星期多卖的商品数为kx2件.由已知条件得k2224,解得k6.若记一个星期的商品销售利润为f(x),则有f(x)(30x9)(432

4、6x2)6x3126x2432x9 072,x0,21.,解析答案,反思与感悟,(2)如何定价才能使一个星期的商品销售利润最大?,解对(1)中函数求导得f(x)18x2252x43218(x2)(x12).当x变化时,f(x),f(x)的变化情况如下表:,x12时,f(x)取得极大值.f(0)9 072,f(12)11 664,301218(元),故定价为每件18元能使一个星期的商品销售利润最大.,反思与感悟,利润最大问题是生活中常见的一类问题,一般根据“利润收入成本”建立函数关系式,再利用导数求最大值.解此类问题需注意两点:价格要大于或等于成本,否则就会亏本;销量要大于0,否则不会获利.,跟

5、踪训练1某工厂生产某种产品,已知该产品的月生产量x吨与每吨产品的价格p(元/吨)之间的函数关系式为p24 200 1 5 x2,且生产x吨产品的成本为R50 000200x(元).问:该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?,解析答案,解依题意,知每月生产x吨产品时的利润为,令f(x)0,得x1200,x2200(舍去).在(0,)内只有一个点x200使f(x)0,且x200是极大值点,200就是最大值点,且最大值为f(200) 1 5 200324 00020050 0003 150 000(元).每月生产200吨产品时,利润达到最大,最大利润为315万元.,题型二面积、容

6、积最值问题,解析答案,例2已知一扇窗子的形状为一个矩形和一个半圆相接,其中半圆的直径为2r,如果窗子的周长为10,求当半径r取何值时窗子的面积最大.,反思与感悟,解设矩形的另一边长为x,半圆弧长为r,r2r2x10,,S10(4)r,,解析答案,反思与感悟,反思与感悟,在解决面积、体积的最值问题时,要正确引入变量,将面积或体积表示为关于变量的函数,结合使实际问题有意义的变量的范围,利用导数求函数的最值.,反思与感悟,解析答案,跟踪训练2如图,将一个矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|3 m,|AD|2 m.(1)要使矩形AM

7、PN的面积大于32 m2,则AN的长应在什么范围内?(2)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积;(3)若AN的长度不少于6 m,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.,解析答案,解设AN的长为x m(x2),,x2,3x232x640,即(3x8)(x8)0,,解析答案,(2)设S矩形AMPNy,,即当AN的长度为4 m时,S矩形AMPN取得最小值24 m2.,即当AN的长度为6 m时,S矩形AMPN取得最小值27 m2.,题型三成本最省问题,解析答案,例3甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的

8、运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b(b0);固定部分为a元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;,解依题意汽车从甲地匀速行驶到乙地所用的时间为 s v ,全程运输成本为,解析答案,反思与感悟,(2)为了使全程运输成本最小,汽车应以多大速度行驶?,解析答案,反思与感悟,解由题意,s、a、b、v均为正数.,反思与感悟,此时y0,即y在(0,c上为减函数.所以当vc时,y最小.综上可知,为使全程运输成本y最小,,选取合适的量做自变量,并根据实际确定其取值范围,正确列出函数关系式,然后利

9、用导数求最值.其中把实际问题转化为数学问题,正确列出函数关系式是解题关键.,反思与感悟,解析答案,跟踪训练3工厂A到铁路的垂直距离为20 km,垂足为B,铁路线上距离B处100 km的地方有一个原料供应站C,现在要从BC段上的D处向工厂修一条公路,使得从原料供应站C到工厂A所需的运费最省,已知每千米的铁路运费与公路运费之比为35,则D点应选在何处?,解析答案,如果公路每千米的运费为a,那么铁路每千米的运费为 3 5 a,于是从原料供应站C途中经中转站D到工厂A所需总运费为,x15.由实际问题可知,运输费用一定有最小值,而此函数有唯一极值点,故x15时取最小值,故D点在距B点15 km处最好.,

10、解析答案,因没有注意问题的实际意义而出错,易错点,例4某船由甲地逆水行驶到乙地,甲、乙两地相距s(km),水的流速为常量a(km/h),船在静水中的最大速度为b(km/h)(ba),已知船每小时的燃料费用(以元为单位)与船在静水中的速度的平方成正比,比例系数为k,则船在静水中的航行速度为多少时,其全程的燃料费用最省?,返回,防范措施,易错易混,错解设船在静水中的航行速度为x km/h,全程的燃料费用为y元,,解析答案,令y0,得x2a或x0(舍),所以f(2a)4ask,即当x2a时,ymin4ask.故当船在静水中的航行速度为2a km/h时,燃料费用最省.,错因分析这个实际问题的定义域为(

11、a,b,而x2a为函数的极值点,是否在(a,b内不确定,所以需要分类讨论,否则会出现错误.,防范措施,正解设船在静水中的航行速度为x km/h,全程的燃料费用为y元,,令y0,得x2a或x0(舍).(1)当2ab时,若x(a,2a),y0,f(x)为减函数,若x(2a,b时,y0,f(x)为增函数,所以当x2a时,ymin4ask.,解析答案,防范措施,当x(a,b时,y0,所以f(x)在(a,b上是减函数,,综上可知,若b2a,则当船在静水中的速度为b km/h时,燃料费用最省;若b2a,则当船在静水中的速度为2a km/h时,燃料费用最省.,防范措施,在运用导数解决实际问题的过程中,正确建

12、立数学模型,找到实际问题中函数定义域的取值范围.,返回,防范措施,当堂检测,1,2,3,4,5,1.内接于半径为R的半圆的周长最大的矩形的边长为(),解析答案,解析设矩形与半圆直径垂直的一边的长为x,,令l0,解得x1 5 5 R,x2 5 5 R(舍去).,答案B,1,2,3,4,5,2.要做一个圆锥形的漏斗,其母线长为20 cm,要使其体积最大,则高为(),解析答案,1,2,3,4,5,答案D,1,2,3,4,5,3.一房地产公司有50套公寓要出租,当月租金定为1 000元时,公寓会全部租出去,月租金每增加50元,就会多一套租不出去,而租出去的公寓每月需花费100元维修费,则月租金定为_元

13、时可获得最大收入.,解析答案,1 800,解析设x套为没有租出去的公寓数,则收入函数f(x)(1 00050x)(50x)100(50x),f(x)1 600100x,当x16时,f(x)取最大值,故把月租金定为1 800元时收入最大.,1,2,3,4,5,解析答案,1,2,3,4,5,4.某公司一年购买某种货物900吨,每次都购买x吨,运费为4万元/次,一年的总存储费为4x万元,要使一年的总运费与总存储费用之和最小,则x_吨.,30,解析设总运费与总存储费之和为y万元,,解析答案,5.制作容积为256的方底无盖水箱,它的高为_时最省材料.,1,2,3,4,5,4,解析设底面边长为x,高为h,

14、则V(x)x2h256,,令S(x)0,解得x8,,课堂小结,返回,1.解应用题的思路方法:(1)审题:阅读理解文字表达的题意,分清条件和结论,找出问题的主要关系;(2)建模:将文字语言转化成数学语言,利用数学知识建立相应的数学模型;(3)解模:把数学问题化归为常规问题,选择合适的数学方法求解;(4)对结果进行验证评估,定性定量分析,做出正确的判断,确定答案.2.解决最优化问题首先要确定变量之间的函数关系,建立函数模型.要熟记常见函数模型,如二次函数模型、三次函数模型、分式函数模型、幂指对模型、三角函数模型等.3.除了变量之间的函数关系式外,实际问题中的定义域也很关键,一定要结合实际问题的意义确定定义域.,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报