1、等比数列的前n项和,高考资源网 ,等差数列 an,等比数列 an,定义,an+1 - an = d ( 常数 ),an+1 an = q ( 不为零的常数 ),通项,an = a1 + ( n 1 ) d,an - am = ( n m ) d,an = a1 qn-1,an am = qn-m,公式,推导 方法,归纳猜想验证法,首尾相咬累加法,归纳猜想验证法,首尾相咬累乘法,性质,若 m+n=r+s , m、n、r、sN*,则 am + an = ar + as,若 m+n=r+s , m、n、r、sN*,则 am an = ar as,前n项和Sn,公式,推导 方法,化零为整法,问题:等比
2、数列an,如果已知a1 , q , n 怎样表示Sn?,Sn = a1 + a2 + + an,解:,= a1 + a1q + a1q2 + + a1 qn-1,= a1 ( 1 + q + q2 + + qn-1 ),尝试:,S1 = a1,S2 = a1 + a1q = a1 ( 1 + q ),S3 = a1 + a1q + a1q2 = a1 ( 1+ q + q2 ),讨论q1时,猜想:,Sn,验证:,an = Sn - Sn-1,= a1 qn-1,当n2时, an = a1 qn-1,证明()式,( 1 + q + q2 + + qn-1 ) ( 1 - q ),= 1 + q
3、+ q2 + + qn-1,- ( q + q2 + + qn-1 + qn ),= 1 - qn, ()式成立,相减,( 1 q ) Sn = a1 - a1 qn,= a1 ( 1 qn ),当 1 q 0 , 即 q 1 时,,当 q = 1 时,,Sn = n a1,错项相减法:,Sn = a1 + a1q + a1q2 + + a1 qn-1,q Sn = a1q + a1q2 + + a1 qn-1 + a1qn,等比数列an前n项和公式为,当q1时,当q1时,Sn = n a1,264-1,- 4 或 3,例1 : 求通项为 an = 2n + 2n -1 的数列的前n项和,解:
4、,= 2 ( 2n 1 ),= n2,解:,当 x = 1 时,Sn =,当 x 1 时,Sn =,n +,( 2 ) 只须注意再讨论y是否等于1的取值情况,例3: 求数列:1 , 2x , 3x2 , ,nxn-1 , (x0) 的前n项和,解:,当 x = 1 时 Sn = 1 + 2 + 3 + + n =,当 x 1 时 Sn = 1 + 2 x+ 3x2 + + nxn-1,x Sn = x+ 2x2 + + (n-1)xn-1 + nxn,错项相减,( 1 x ) Sn = 1 + x + x2 + + xn-1 - nxn,- nxn,等差数列 an,等比数列 an,定义,an+
5、1 - an = d ( 常数 ),an+1 an = q ( 不为零的常数 ),通项,an = a1 + ( n 1 ) d,an - am = ( n m ) d,an = a1 qn-1,an am = qn-m,公式,推导 方法,归纳猜想验证法,首尾相咬累加法,归纳猜想验证法,首尾相咬累乘法,性质,若 m+n=r+s , m、n、r、sN*,则 am + an = ar + as,若 m+n=r+s , m、n、r、sN*,则 am an = ar as,前n项和Sn,公式,推导 方法,= na1 +,化零为整法,方法三:,Sn = a1 + a2 + + an,= a1 + a1q + a1q2 + + a1 qn-1,= a1 + q ( a1 + a1q + + a1 qn-2 ),= a1 + q Sn-1,= a1 + q ( Sn an ), ( 1 q ) Sn = a1 q an,当q1时,Sn,当q1时,Sn = n a1,方法四:,当q1时,Sn,当q1时,Sn = n a1,