1、一、二次函数 真题与模拟题分类汇编(难题易错题)1如图,已知抛物线经过A(3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,ADF的面积为S求S与m的函数关系式;S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由【答案】(1).(2).(3).当m=2时,S最大,最大值为1,此时点E的坐标为(2,2).
2、【解析】【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC是定值,得到当PB+PC最小时,PBC的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E的横坐标为m,表示出E(m,2m+6),F(m,),最后表示出EF的长,从而表示出S于m的函数关系,然后求二次函数的最值即可.【详解】解:(1)抛物线经过A(3,0),B(1,0),可设抛物线交点式为.又抛物线经过C(0,3),.抛物线的解析式为:,即.(2)PBC的周长为:PB+PC+BC,且BC是定值.当PB+PC最小时,PBC的周长最小.点A、点B关于对称轴I对称,连接AC交l于点P,即点P为所求
3、的点.AP=BP,PBC的周长最小是:PB+PC+BC=AC+BC.A(3,0),B(1,0),C(0,3),AC=3,BC=.PBC的周长最小是:.(3)抛物线顶点D的坐标为(1,4),A(3,0),直线AD的解析式为y=2x+6点E的横坐标为m,E(m,2m+6),F(m,).S与m的函数关系式为.,当m=2时,S最大,最大值为1,此时点E的坐标为(2,2).2如图,抛物线yx22x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于
4、点E,与抛物线交于点P,过点P作PQAB交抛物线于点Q,过点Q作QNx轴于点N,可得矩形PQNM如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方)若FG2DQ,求点F的坐标【答案】(1)A(3,0),B(1,0);C(0,3) ;(2)矩形PMNQ的周长2m28m+2;(3) m2;S;(4)F(4,5)或(1,0)【解析】【分析】(1)利用函数图象与坐标轴的交点的求法,求出点A,
5、B,C的坐标;(2)先确定出抛物线对称轴,用m表示出PM,MN即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;(4)在(3)的基础上,判断出N应与原点重合,Q点与C点重合,求出DQDC,再建立方程(n+3)(n22n+3)4即可【详解】(1)由抛物线yx22x+3可知,C(0,3)令y0,则0x22x+3,解得,x3或xl,A(3,0),B(1,0)(2)由抛物线yx22x+3可知,对称轴为x1M(m,0),PMm22m+3,MN(m1)22m2,矩形PMNQ的周长2(PM+MN)(m22m+32m2)22m28m+2(3)2m28m+22(m+2)
6、2+10,矩形的周长最大时,m2A(3,0),C(0,3),设直线AC的解析式ykx+b,解得kl,b3,解析式yx+3,令x2,则y1,E(2,1),EM1,AM1,SAMEM(4)M(2,0),抛物线的对称轴为xl,N应与原点重合,Q点与C点重合,DQDC,把x1代入yx22x+3,解得y4,D(1,4),DQDCFG2DQ,FG4设F(n,n22n+3),则G(n,n+3),点G在点F的上方且FG4,(n+3)(n22n+3)4解得n4或n1,F(4,5)或(1,0)【点睛】此题是二次函数综合题,主要考查了函数图象与坐标轴的交点的求法,待定系数法求函数解析式,函数极值的确定,解本题的关键
7、是用m表示出矩形PMNQ的周长3如图,已知二次函数的图象过点O(0,0)A(8,4),与x轴交于另一点B,且对称轴是直线x3(1)求该二次函数的解析式;(2)若M是OB上的一点,作MNAB交OA于N,当ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQx轴与抛物线交于Q过A作ACx轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标【答案】(1);(2)当t3时,SAMN有最大值3,此时M点坐标为(3,0);(3)P点坐标为(14,0)或(2,0)或(4,0)或(8,0)【解析】【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线
8、解析式;(2)设M(t,0),先其求出直线OA的解析式为直线AB的解析式为y=2x-12,直线MN的解析式为y=2x-2t,再通过解方程组得N(),接着利用三角形面积公式,利用SAMN=SAOM-SNOM得到然后根据二次函数的性质解决问题;(3)设Q,根据相似三角形的判定方法,当时,PQOCOA,则;当时,PQOCAO,则,然后分别解关于m的绝对值方程可得到对应的P点坐标【详解】解:(1)抛物线过原点,对称轴是直线x3,B点坐标为(6,0),设抛物线解析式为yax(x6),把A(8,4)代入得a824,解得a,抛物线解析式为yx(x6),即yx2x;(2)设M(t,0),易得直线OA的解析式为
9、yx,设直线AB的解析式为ykx+b,把B(6,0),A(8,4)代入得,解得,直线AB的解析式为y2x12,MNAB,设直线MN的解析式为y2x+n,把M(t,0)代入得2t+n0,解得n2t,直线MN的解析式为y2x2t,解方程组得,则,SAMNSAOMSNOM ,当t3时,SAMN有最大值3,此时M点坐标为(3,0);(3)设,OPQACO,当时,PQOCOA,即,PQ2PO,即,解方程得m10(舍去),m214,此时P点坐标为(14,0);解方程得m10(舍去),m22,此时P点坐标为(2,0);当时,PQOCAO,即,PQPO,即,解方程得m10(舍去),m28,此时P点坐标为(8,
10、0);解方程得m10(舍去),m24,此时P点坐标为(4,0);综上所述,P点坐标为(14,0)或(2,0)或(4,0)或(8,0)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题4已知抛物线.(1)求证:该抛物线与x轴总有交点;(2)若该抛物线与x轴有一个交点的横坐标大于3且小于5,求m的取值范围;(3)设抛物线与轴交于点M,若抛物线与x轴的一个交点关于直线的对称点恰好是点M,求的值.【答案】(1)证明见解析;(2);(3)【解析】【分析
11、】(1)本题需先根据判别式解出无论m为任何实数都不小于零,再判断出物线与x轴总有交点(2)根据公式法解方程,利用已有的条件,就能确定出m的取值范围,即可得到结果(3)根据抛物线y=-x2+(5-m)x+6-m,求出与y轴的交点M的坐标,再确定抛物线与x轴的两个交点关于直线y=-x的对称点的坐标,列方程可得结论【详解】(1)证明: 抛物线与x轴总有交点. (2)解:由(1),根据求根公式可知,方程的两根为:即由题意,有 (3)解:令 x = 0, y = M(0,)由(2)可知抛物线与x轴的交点为(-1,0)和(,0),它们关于直线的对称点分别为(0 , 1)和(0, ),由题意,可得: 【点睛
12、】本题考查对抛物线与x轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算5已知,抛物线yx2+bx+c经过点A(1,0)和C(0,3)(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当MAC是直角三角形时,求点M的坐标【答案】(1);(2)当的值最小时,点P的坐标为;(3)点M的坐标为、或.【解析】【分析】由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;连接BC交抛物线对称轴于点P,此时取最
13、小值,利用二次函数图象上点的坐标特征可求出点B的坐标,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P的坐标;设点M的坐标为,则,分、和三种情况,利用勾股定理可得出关于m的一元二次方程或一元一次方程,解之可得出m的值,进而即可得出点M的坐标【详解】解:将、代入中,得:,解得:,抛物线的解析式为连接BC交抛物线对称轴于点P,此时取最小值,如图1所示当时,有,解得:,点B的坐标为抛物线的解析式为,抛物线的对称轴为直线设直线BC的解析式为,将、代入中,得:,解得:,直线BC的解析式为当时,当的值最小时,点P的坐标为设
14、点M的坐标为,则,分三种情况考虑:当时,有,即,解得:,点M的坐标为或;当时,有,即,解得:,点M的坐标为;当时,有,即,解得:,点M的坐标为综上所述:当是直角三角形时,点M的坐标为、或【点睛】本题考查待定系数法求二次一次函数解析式、二次一次函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:由点的坐标,利用待定系数法求出抛物线解析式;由两点之间线段最短结合抛物线的对称性找出点P的位置;分、和三种情况,列出关于m的方程6如图,抛物线y=ax2+bx过点B(1,3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A(1)求抛物线的解析式,并根据图象直接写出当y0时,自变量
15、x的取值范围;(2)在第二象限内的抛物线上有一点P,当PABA时,求PAB的面积【答案】(1)抛物线的解析式为y=x24x,自变量x的取值范图是0x4;(2)PAB的面积=15【解析】【分析】(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;(2)如图,过点B作BEx轴,垂足为点E,过点P作PEx轴,垂足为F,设P(x,x2-4x),证明PFAAEB,求出点P的坐标,将PAB的面积构造成长方形去掉三个三角形的面积【详解】(1)由题意得,解得,抛物线的解析式为y=x2-4x,令y=0,得x2-2x=0,解得x=0或4,结合图象知,A的坐标为(4,0),根据
16、图象开口向上,则y0时,自变量x的取值范围是0x4;(2)如图,过点B作BEx轴,垂足为点E,过点P作PEx轴,垂足为F,设P(x,x2-4x),PABAPAF+BAE=90,PAF+FPA=90,FPA=BAE又PFA=AEB=90PFAAEB,,即,解得,x= 1,x=4(舍去)x2-4x=-5点P的坐标为(-1,-5),又B点坐标为(1,-3),易得到BP直线为y=-4x+1所以BP与x轴交点为(,0)SPAB=【点睛】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键7如图,(图1,图2),四边形ABCD是边长为
17、4的正方形,点E在线段BC上,AEF=90,且EF交正方形外角平分线CP于点F,交BC的延长线于点N, FNBC(1)若点E是BC的中点(如图1),AE与EF相等吗?(2)点E在BC间运动时(如图2),设BE=x,ECF的面积为y求y与x的函数关系式;当x取何值时,y有最大值,并求出这个最大值.【答案】(1)AE=EF;(2)y=-x2+2x(0x4),当x=2,y最大值=2.【解析】【分析】(1)在AB上取一点G,使AG=EC,连接GE,利用ASA,易证得:AGEECF,则可证得:AE=EF;(2)同(1)可证明AE=EF,利用AAS证明ABEENF,根据全等三角形对应边相等可得FN=BE,
18、再表示出EC,然后利用三角形的面积公式即可列式表示出ECF的面积为y,然后整理再根据二次函数求解最值问题【详解】(1)如图,在AB上取AG=EC,四边形ABCD是正方形,AB=BC,有AG=EC ,BG=BE ,又B=90,AGE=135,又BCD=90,CP平分DCN,ECF=135,BAEAEB=90,AEBFEC=90,BAE=FEC,在AGE和ECF中, ,AGEECF,AE=EF;(2)由(1)证明可知当E不是中点时同理可证AE=EF,BAE=NEF,B=ENF=90,ABEENF,FN=BE=x,SECF= (BC-BE)FN,即y= x(4-x),y=- x2+2x(0x4),当
19、x=2,y最大值=2.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,二次函数的最值问题,综合性较强,正确添加辅助线、熟练掌握相关知识是解题的关键8如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由【答案】(1)抛物线解析式为y=x2+2x+3;直线AC的解
20、析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(,)或(,),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B,连接DB交y轴于M,如图1,则B(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时BDM的周长最小,然后求出直线DB的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解
21、析式为y=-x+b,把C点坐标代入求出b得到直线PC的解析式为y=-x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标详解:(1)设抛物线解析式为y=a(x+1)(x3),即y=ax22ax3a,2a=2,解得a=1,抛物线解析式为y=x2+2x+3;当x=0时,y=x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(1,0),C(0,3)代入得,解得,直线AC的解析式为y=3x+3;(2)y=x2+2x+3=(x1)2+4,顶点D的坐标为(1,4),作B点关于y轴的对称点B,连接DB交y轴于M,如图1,则B(3
22、,0),MB=MB,MB+MD=MB+MD=DB,此时MB+MD的值最小,而BD的值不变,此时BDM的周长最小,易得直线DB的解析式为y=x+3,当x=0时,y=x+3=3,点M的坐标为(0,3);(3)存在过点C作AC的垂线交抛物线于另一点P,如图2,直线AC的解析式为y=3x+3,直线PC的解析式可设为y=x+b,把C(0,3)代入得b=3,直线PC的解析式为y=x+3,解方程组,解得或,则此时P点坐标为(,);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=x+b,把A(1,0)代入得+b=0,解得b=,直线PC的解析式为y=x,解方程组,解得或,则此时P点坐标为(,).
23、综上所述,符合条件的点P的坐标为(,)或(,).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题9已知抛物线C1:y=ax24ax5(a0)(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2
24、的顶点到x轴的距离为2,求a的值【答案】(1)(1,0)或(5,0)(2)(0,5),(4,5)y=ax2+4ax5(3)a=或【解析】试题分析:(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)化简抛物线解析式,即可求得两个点定点的横坐标,即可解题; 根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或2,即可解题试题解析:(1)当a=1时,抛物线解析式为y=x24x5=(x2)29,对称轴为y=2;当y=0时,x2=3或3,即x=1或5;抛物线与x轴的交点坐标为(1,0)或(5,0);(2)抛物线C1解析式为:y=ax24ax5,整理得:y=ax(x4)
25、5;当ax(x4)=0时,y恒定为5;抛物线C1一定经过两个定点(0,5),(4,5);这两个点连线为y=5;将抛物线C1沿y=5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;抛物线C2解析式为:y=ax2+4ax5,(3)抛物线C2的顶点到x轴的距离为2,则x=2时,y=2或者2;当y=2时,2=4a+8a5,解得,a=;当y=2时,2=4a+8a5,解得,a=;a=或;考点:1、抛物线与x轴的交点;2、二次函数图象与几何变换10抛物线y=ax2+bx+c,若a,b,c满足b=a+c,则称抛物线y=ax2+bx+c为“恒定”抛物线(1)求证:“恒定”抛物线y=ax2+bx+c必过x轴上
26、的一个定点A;(2)已知“恒定”抛物线的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由【答案】(1)证明见试题解析;(2)y=3x2+43x+33,或y=-3x2+3【解析】试题分析:(1)由“恒定”抛物线的定义,即可得出抛物线恒过定点(1,0);(2)求出抛物线的顶点坐标和B的坐标,由题意得出PACQ,PA=CQ;存在两种情况:作QMAC于M,则QM=OP=3,证明RtQMCRtPOA,MC=OA=1,得出点Q的坐标,设抛物线的解析式为y=a(x+2)2-3,把
27、点A坐标代入求出a的值即可;顶点Q在y轴上,此时点C与点B重合;证明OQCOPA,得出OQ=OP=3,得出点Q坐标,设抛物线的解析式为y=ax2+3,把点C坐标代入求出a的值即可试题解析:(1)由“恒定”抛物线y=ax2+bx+c,得:b=a+c,即ab+c=0,抛物线y=ax2+bx+c,当x=1时,y=0,“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A(1,0);(2)存在;理由如下:“恒定”抛物线,当y=0时,3x2-3=0,解得:x=1,A(1,0),B(1,0);x=0时,y=-3,顶点P的坐标为(0,-3),以PA,CQ为边的平行四边形,PA、CQ是对边,PACQ,PA=
28、CQ,存在两种情况:如图1所示:作QMAC于M,则QM=OP=3,QMC=90=POA,在RtQMC和RtPOA中,CQ=PA,QM=OP,RtQMCRtPOA(HL),MC=OA=1,OM=2,点A和点C是抛物线上的对称点,AM=MC=1,点Q的坐标为(2,-3),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为y=a(x+2)2-3,把点A(1,0)代入得:a=3,抛物线的解析式为:y=3(x+2)2-3,即y=3x2+43x+33;如图2所示:顶点Q在y轴上,此时点C与点B重合,点C坐标为(1,0),CQPA,OQC=OPA,在OQC和OPA中,OQC=OPA,COQ=AOP,CQ=PA,OQCOPA(AAS),OQ=OP=3,点Q坐标为(0,3),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为y=ax2+3,把点C(1,0)代入得:a=-3,抛物线的解析式为:y=-3x2+3;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形,抛物线的解析式为:y=3x2+43x+33,或y=-3x2+3考点:1二次函数综合题;2压轴题;3新定义;4存在型;5分类讨论