1、第十七讲 32 平面与立体相交课 题:平面与曲面立体相交课堂类型:讲授教学目的:讲解曲面立体截割的截交线的投影教学要求:熟练掌握圆柱体、圆锥体、圆球体截割的截交线的作图方法教学重点:圆柱体截割的截交线的画法教学难点:圆锥体、圆球体截割的截交线的画法教 具:模型:截割圆柱体、截割圆锥体、截割圆球体教学方法:曲面立体(棱柱和棱锥)的截割实际就是求截平面与曲面立体表面的共有点的投影,然后把各点的同名投影依次光滑连接起来。讲课中要特别强调先作出原始的完整曲面立体,然后分步截割,并举例说明作图方法。教学过程:一、复习旧课1、截交线的两个基本性质。2、订正作业,复习求曲面立体截交线的方法和步骤。二、引入新
2、课题上次课学习了平面立体的截交线,本次课继续学习曲面立体的截交线。平面与曲面立体相交产生的截交线一般是封闭的平面曲线,也可能是由曲线与直线围成的平面图形,其形状取决于截平面与曲面立体的相对位置。三、教学内容曲面立体的截交线,就是求截平面与曲面立体表面的共有点的投影,然后把各点的同名投影依次光滑连接起来。当截平面或曲面立体的表面垂直于某一投影面时,则截交线在该投影面上的投影具有积聚性,可直接利用面上取点的方法作图。(一)圆柱的截交线1、基本类型平面截切圆柱时,根据截平面与圆柱轴线的相对位置不同,其截交线有三种不同的形状。对照表 31 分析讲解。2、讲解例题(1)例一(例 33) 如图 315(a
3、)所示,求圆柱被正垂面截切后的截交线。分析:截平面与圆柱的轴线倾斜,故截交线为椭圆。此椭圆的正面投影积聚为一直线。由于圆柱面的水平投影积聚为圆,而椭圆位于圆柱面上,故椭圆的水平投影与圆柱面水平投影重合。椭圆的侧面投影是它的类似形,仍为椭圆。可根据投影规律由正面投影和水平投影求出侧面投影。(a)立体图 (b)(c) (d)图 315 圆柱的截交线边画图边讲解作图方法与步骤。(2)例二(例 34) 如图 316(a)所示,完成被截切圆柱的正面投影和水平投影。分析:该圆柱左端的开槽是由两个平行于圆柱轴线的对称的正平面和一个垂直于轴线的侧平面切割而成。圆柱右端的切口是由两个平行于圆柱轴线的水平面和两个
4、侧平面切割而成。(a) (b)(c) (d)图 316 补全带切口圆柱的投影边画图边讲解作图方法与步骤。(二)圆锥的截交线1、基本类型平面截切圆锥时,根据截平面与圆锥轴线的相对位置不同,其截交线有五种不同的情况。对照表 32 分析讲解。2、讲解例题例三(例 35) 如图 317(a)所示,求作被正平面截切的圆锥的截交线。分析:因截平面为正平面,与轴线平行,故截交线为双曲线。截交线的水平投影和侧面投影都积聚为直线,只需求出正面投影。(a)立体图 (b)图 317 正平面截切圆锥的截交线边画图边讲解作图方法与步骤。(三)圆球的截交线1、基本性质平面在任何位置截切圆球的截交线都是圆。当截平面平行于某
5、一投影面时,截交线在该投影面上的投影为圆的实形,在其他两面上的投影都积聚为直线。如图 318 所示。(a)立体图 (b)图 318 圆球的截交线2、讲解例题例四(例 36) 如图 319(a)所示,完成开槽半圆球的截交线。分析:球表面的凹槽由两个侧平面和一个水平面切割而成,两个侧平面和球的交线为两段平行于侧面的圆弧,水平面与球的交线为前后两段水平圆弧,截平面之间得交线为正垂线。(a) (b)(c)图 319 开槽圆球的截交线边画图边讲解作图方法与步骤。(四)综合题例实际机件常由几个回转体组合而成。求组合回转体的截交线时,首先要分析构成机件的各基本体与截平面的相对位置、截交线的形状、投影特性,然
6、后逐个画出各基本体的截交线,再按它们之间的相互关系连接起来。例四(例 37) 如图 320(a)所示,求作顶尖头的截交线。分析:顶尖头部是由同轴的圆锥与圆柱组合而成。它的上部被两个相互垂直的截平面P 和 Q 切去一部分,在它的表面上共出现三组截交线和一条 P 与 Q 的交线。截平面 P 平行于轴线,所以它与圆锥面的交线为双曲线,与圆柱面的交线为两条平行直线。截平面 Q 与圆柱斜交,它截切圆柱的截交线是一段椭圆弧。三组截交线的侧面投影分别积聚在截平面P 和圆柱面的投影上,正面投影分别积聚在 P、Q 两面的投影(直线)上,因此只需求作三组截交线的水平投影。(a) (b)(c) (d)图 320 顶
7、尖头的截交线边画图边讲解作图方法与步骤。四、小结总结例题,说明求曲面立体截交线的方法和步骤。五、布置作业习题集 32(3) 、 (4) 、 (7) 、 (8)第十八讲 33 立体与立体相交课 题:1、相贯线的性质2、相贯线的画法3、相贯线的特殊情况课堂类型:讲授教学目的:1、介绍相贯线的概念2、讲解相贯线的两个基本性质3、讲解两个曲面立体相贯的相贯线的投影教学要求:1、了解相贯线的两个基本性质2、熟练掌握求曲面立体相贯线的方法,即求两个曲面立体表面上共有点的投影,然后把各点的同名投影依次光滑连接起来教学重点:利用立体投影的积聚性求作两个圆柱体相贯的相贯线的画法教学难点:相贯线上特殊点的确定教
8、具:模型:圆柱与圆柱相贯的模型、圆柱垂直开孔形成相贯线的模型、空心圆柱与空心圆柱相贯的模型教学方法:两个曲面立体相贯线的实质就是求它们表面的共有点。作图时,依次求出特殊点和一般点,判别其可见性,然后将各点光滑连接起来,即得相贯线。作图校繁琐,注重演示说明。教学过程:一、复习旧课复习圆柱体、圆锥体、圆球体截割的截交线的作图方法。二、引入新课题两个基本体相交(或称相贯) ,表面产生的交线称为相贯线。本次课主要学习曲面立体的相贯线。三、教学内容(一)相贯线的性质1、相贯线的概念两个基本体相交(或称相贯) ,表面产生的交线称为相贯线。本节只讨论最为常见的两个曲面立体相交的问题。2、相贯线的性质:(1)
9、相贯线是两个曲面立体表面的共有线,也是两个曲面立体表面的分界线。相贯线上的点是两个曲面立体表面的共有点。(2)两个曲面立体的相贯线一般为封闭的空间曲线,特殊情况下可能是平面曲线或直线。求两个曲面立体相贯线的实质就是求它们表面的共有点。作图时,依次求出特殊点和一般点,判别其可见性,然后将各点光滑连接起来,即得相贯线。(二)相贯线的画法两个相交的曲面立体中,如果其中一个是柱面立体(常见的是圆柱面) ,且其轴线垂直于某投影面时,相贯线在该投影面上的投影一定积聚在柱面投影上,相贯线的其余投影可用表面取点法求出。1、讲解例题(例 38) 如图 321(a)所示,求正交两圆柱体的相贯线。分析:两圆柱体的轴
10、线正交,且分别垂直于水平面和侧面。相贯线在水平面上的投影积聚在小圆柱水平投影的圆周上,在侧面上的投影积聚在大圆柱侧面投影的圆周上,故只需求作相贯线的正面投影。出示模型辅助讲解。(a)立体图 (b)图 321 正交两圆柱的相贯线边画图边讲解作图方法与步骤。2、相贯线的近似画法相贯线的作图步骤较多,如对相贯线的准确性无特殊要求,当两圆柱垂直正交且直径有相差时,可采用圆弧代替相贯线的近似画法。如图 322 所示,垂直正交两圆柱的相贯线可用大圆柱的 D/2 为半径作圆弧来代替。图 3-22 相贯线的近似画法3、两圆柱正交的类型两圆柱正交有三种情况:(1)两外圆柱面相交;(2)外圆柱面与内圆柱面相交;(3)两内圆柱面相交。这三种情况的相交形式虽然不同,但相贯线的性质和形状一样,求法也是一样的。如图 323 所示。出示模型辅助讲解。(a)两外圆柱面相交 (b)外圆柱面与内圆柱面相交(c)两内圆柱面相交图 323 两正交圆柱相交的三种情况(三)相贯线的特殊情况两曲面立体相交,其相贯线一般为空间曲线,但在特殊情况下也可能是平面曲线或直线。1、两个曲面立体具有公共轴线时,相贯线为与轴线垂直的圆,如图 324 所示。