1、- 1 -厦门外国语学校 2017-2018 学年第二学期期中考试数学试题本试卷分选择题和非选择题两部分,共 4 页,满分为 150 分。考试用时 120 分钟。第卷 (本卷共计 80 分)一、选择题:本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 的值等于( ) 23sin6-A. B. C. 112- 32D. 32-2设 是两条不同的直线, 是两个不同的平面,下列命题中正确的是( ),mn,A若 则 B若 ,则,mn/,mn/nC若 则 D若 则 ,n,/3若经过两点 , 的直线的倾斜角为 ,则 等于( )()4,21y+()
2、,3-34yA1 B3 C 0 D 24如果方程 表示圆,那么 的取值范围是( )250xmmA B C D(,)(,1)(,1,)5函数的定义域为( )A B 5| ,66xkxkZ+ 2| ,33xkxkZ+C D |22,k+|2,k+6已知正 的边长为 2,那么用斜二测画法得到的 的直观图 的面积BABCABC为( )A B C D33262647某几何体的三视图如图所示,若该几何体的体积为 ,则图中 的值为( )203xA 1- 2 -B 2C 5D 38 九章算术中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥 为PABC鳖臑, 平面 ,三棱锥 的四个顶点都在球 的PA,3,
3、4,5BCPACPABCO球面上,则球 的表面积为( )OA B C D172509直线与圆相交于点,点是坐标原点,若 是正三角形,则实数的值为 ( )AOBA B C D 21-11-10点 在函数 的图象上,当 时, 的取值范围是( )(),Mxy28x=-+2,5x1yx+A ,2 B0, C , D2,4 11已知直三棱柱中, , , ,则异面直线与所成角的余弦值为( )A B C D3215105312如图,等边三角形 的中线 与中位线 相交于 ,AFEG已知 是 绕 旋转过程中的一个图形,下列命题EDE中,错误的是( )A动点 在平面 上的射影在线段 上BCAB恒有平面 平面GFD
4、C三棱锥 的体积有最大值E-D异面直线 与 不可能垂直二、填空题:本大题共 4 小题,每小题 5 分,共 20 分13已知扇形的面积为,扇形的圆心角的弧度 数是,则扇形的周长为_14设光线从点 出发,经过 轴反射后经过点 ,则光线与 轴的交点坐标2,Ax0,1Bx为_15三棱锥的顶点在底面的射影为底面正三角形的中心,高是 ,侧棱长为 ,那么侧37面与底面所成的二面角是_.16从原点引圆 的切线 ,当 的值变化时,切点 的轨()()221xmy-+-=+ykx=mP- 3 -迹方程是_.三、解答题:本大题共 6 小题,共 70 分.(解答应写出必要的文字说明,证明过程或演算步骤)17 (本小题满
5、分 10 分) ()已知: ,求 的值;4sin5=-tan()已知: ,求 的值.tan2=21coi-18 (本小题满分 10 分)如图,已知多面体 EABCDF的底面 是正方形, EA底面ABCD, EAF/,且 2( )求证: 平面 ;B( )连接 交于点 , 取 中点 。证明: 平 面 .,OG/BCD19 (本小题满分 12 分)已知直线过点 .(1,0)()若直线与直线 平行,求直线的方程并求与间的 距离; 1:3lyx=+( )若直线被两平行线 和 所截得的线段长为 2,求直线的方程.210-210xy-=20 (本小题满分 12 分)在四边形 ABCD 中(如图),AB/CD
6、,ABBC,G 为 AD 上一点,且AB=AG=1,GD=CD=2,M 为 GC 的中 点,点 P 为边 BC 上的点,且满足 BP=2PC现沿 GC 折叠使- 4 -平面 GCD平面 ABCG(如图) ()求证:平面 BGD平 面 GCD: ()求直线 PM 与平面 BGD 所成角的正弦值 21 (本小题满分 12 分)如图, l1, l2是通过某城市开发区中 心 O 的两条南北和东西走向的街道,连结 M、 N 两地之间的铁路线是圆心在 l2上的一段圆弧若点 M 在点 O 正北方向,且|MO|3 km,点 N 到 l1, l2的距离分别为 4 km 和 5 km.()建立适当的坐标系,求铁路线所在圆弧的方程;()若该城市的某中学拟在点 O 正东方向选址建分校,考虑环境问题,要求校址到点 O 的距离大于 4 km,并且铁路线上任意一点到校址的距离不能少于 km,求该校址距点 O 的最 近距离(注:校址视26为一个点)22 (本小题满分 14 分)已知圆 : ,点 是直线 : 上的一M224xyPl20xy动点,过点 作圆 M 的切线 、 ,切点为 、 PAPBA()当切线 PA 的长度为 时,求点 的坐标;3()若 的外接圆为圆 ,试问:当 运动时,圆 是否过定点?若存在,求出ANN所有的定点的坐标;若不存在,说明理由;()求线段 长度的最小值B