1、修正值 含有误差的测量结果,加上修正值后就可能补偿或减少误差的影响。由于系统误差不能完全获知,因此这种补偿并不完全。修正值等于负的系统误差,这就是说加上某个修正值,就像扣掉某个系统误差,其效果是一样的,只是人们考虑问题的出发点不同而已: 真值=测量结果+ 修正值 = 测量结果- 误差 在量值溯源和量值传递中,常常采用这种加修正值的直观的办法。用高一个等级的计量标准来校准或检定测量仪器,其主要内容之一就是要获得准确的修正值。例如:用频率为fs 的标准振荡器作为信号源,测得某台送检的频率计的示值为 f,则示值误差 为 f-fs。所以,在今后使用这台频率计时应扣掉这个误差,即加上修正值(-),可得
2、f+(-),这样就与fs 一致了。换言之,系统误差可以用适当的修正值来估计并予以补偿。但应强调指出: 由于系统误差不能完全获知,因此这种补偿是不完全的,也即修正值本身就含有不确定度。当测量结果以代数和方式与修正值相加之后,其系统误差之模会比修正前的要小,但不可能为零,也即修正值只能对系统误差进行有限程度的补偿。修正因子 修正因子是指“为补偿系统误差而与未修正测量结果相乘的数字因子”。 含有系统误差的测量结果,乘以修正因数后就可以补偿或减少误差的影响。比方由于等臂天平的不等臂误差,不等臂天平的臂比误差,线性标尺分度时的倍数误差,以及测量电桥臂的不等称误差所带来的测量结果中的系统误差,均可以通过乘一个修正因数得以补偿。但是,由于系统误差并不能完全获知,因而这种补偿是不完全的,也即修正因数本身仍含有不确定度。 通过修正因子或修正值已进行了修正的测量结果,即使具有较大的不确定度,但可能仍然十分接近被测量的真值(即误差甚小 ),因此,不应把测量不确定度与已修正测量结果的误差相混淆。