1、二、航行问题: 顺水(风)速度=_+水流速度(风速);逆水(风)速度=静水(无风)速度_。由此可得到航行问题中一个重要等量关系:顺水(风)速度水流速度(风速)逆水(风)速度+水流速度(风速)静水(无风)速度。 例 2、 一艘轮船在甲、乙两地之间行驶,顺流航行需 6 小时,逆流航行需 8 小时,已知水流速度每小时 2 km。求甲、乙两地之间的距离。练习:1. 一艘船在两个码头之间航行,水流速度是 3 千米每小时,顺水航行需要 2 小时,逆水航行需要 3 小时,求两码头的之间的距离?2.一架飞机飞行在两个城市之间,风速为每小时 24 千米,顺风飞行需要 2 小时 50 分钟,逆风飞行需要 3 小时
2、,求两城市间距离。【行船问题公式】 (1)一般公式: 静水速度(船速)+水流速度(水速)=顺水速度; 船速-水速=逆水速度; (顺水速度+逆水速度)2=船速; (顺水速度-逆水速度)2=水速。 (2)两船相向航行的公式: 甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度 (3)两船同向航行的公式: 后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。 (求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目(二)行船问题1、一艘船在两个码头之间航行,水流速度是 3 千米每小时,顺水航行需要 2 小时,逆水航行需要 3 小时,求两码头的之间的距离?2、一架飞机飞行在两个城市之间,风速为每小时 24 千米,顺风飞行需要 2 小时 50 分钟,逆风飞行需要 3 小时,求两城市间距离?九、几何问题1、一个长方形的周长为 26,这个长方形的长减少 1,宽增加 2,就可成为一个正方形,则原长方形的长和宽各为多厘米?2、在一个底面直径为 30 厘米,高为 8 厘米的圆锥体容器中倒满水,然后将水倒入一个底面直径为 10 厘米的圆柱体空容器内,圆柱体容器内的水有多高?