1、2.2等差数列的前n项和(第三课时),等差数列的前n项和的函数特性及最大致与最小值,等差数列的前n项和公式:,形式1:,形式2:,复习回顾,.将等差数列前n项和公式 看作是一个关于n的函数,这个函数有什么特点?,Sn是关于n的二次式,常数项为零。(d可以为零),则 Sn=An2+Bn,令,新课讲授,结论1:若数列an的前n项和为Sn=pn2+qn,,(p,q为常数)是关于n的二次式,则数列an是等差数列。,当d0时,Sn是常数项为零的二次函数,若C0,则数列an不是等差数列。,若C=0,则an为等差数列;,结论2:设数列an的前n项和为 Sn=An2+Bn+C,(A,B,C是常数),当d=0时
2、,Sn=na1不是二次函数,问题与思考,例1 若一个等差数列前3项和为34,最后三项和为146,且所有项的和为390,则这个数列共有_项。,13,例2 已知数列an中Sn=2n2+3n,求证:an是等差数列.,例1、若等差数列an前4项和是2,前9项和是6,求其前n 项和的公式。,解:设首项为a1,公差为d,则有:,设 Sn= an2 + bn,依题意得:S4=2, S9= 6,即,解之得:,另解:,等差数列的前n项的最值问题,例1.已知等差数列an中,a1=13且S3=S11,求n取何值时,Sn取最大值.,解法1,由S3=S11得, d=2,当n=7时,Sn取最大值49.,等差数列的前n项的
3、最值问题,例1.已知等差数列an中,a1=13且S3=S11,求n取何值时,Sn取最大值.,解法2,由S3=S11得,d=20,a80,解:,由S3=S11得,d,S3 = S11,问:这个数列的前几项的和最大?,例2:已知数列an是等差数列,且a1= 21,公差d=2,求这个数列的前n项和Sn的最大值。S11最大为121,求等差数列前n项的最大(小)的方法,方法1:由 利用二次函数的对称轴求得最值及取得最值时的n的值.,方法2:利用an的符号当a10,d0时,数列前面有若干项为负,此时所有负项的和为Sn的最小值,其n的值由an 0且an+1 0求得.,练习:已知数列an的通项为an=26-2
4、n,要使此数列的前n项和最大,则n的值为( )A.12 B.13 C.12或13 D.14,C,当d0时,Sn是常数项为零的二次函数,则 Sn=An2+Bn,令,小结,Sn是关于n的二次式,常数项为零。(d可以为零),结论1:若数列an的前n项和为Sn=pn2+qn,,(p,q为常数)是关于n的二次式,则数列an是等差数列。,若C0,则数列an不是等差数列。,若C=0,则an为等差数列;,结论2:设数列an的前n项和为 Sn=An2+Bn+C,(A,B,C是常数),小结,结论:3:等差数列前n项和不一定是关于n的二次函数:,(1)当d0是,sn是项数n的二次函数,且不含常数项;,(2)当d=0是,sn=na1,不是项数n 的二次函数。,反之,关于n的二次函数也不一定是某等差数列的和。,若C0,则数列an不是等差数列。,若C=0,则an为等差数列;,Sn=An2+Bn+C,,谢谢!,