1、第十章上机实验第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理 论的同时,做习题和上机实验。 上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。实验一系统响应及系统稳定性。实验二时域采样与频域采样。实验三用FFT对信号作频谱分析。实验四IIR数字滤波器设计及软件实现。实验五FIR数字滤波器设计与软件实现实验六应用实验一一数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。建议自学的读者在学习完第一章后作
2、 实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现 在。学习完第六章进行; 实验五在学习完第七章后进行。实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。10.1 实验一:系统响应及系统稳定性1 .实验目的(1)掌握求系统响应的方法。(2)掌握时域离散系统的时域特性。(3)分析、观察及检验系统的稳定性。2 .实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数 描述系统特性。已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输 入信号的响应,本实验仅在时域求解。 在计算机上适
3、合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数 filter函数。也可以用MATLAB语言的工具箱函数 conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。重点分析实验系统 的稳定性,包括观察系统的暂态响应和稳定响应。系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。或者系统 的单位脉冲响应满足绝对可和的条件。系统的稳定性由其差分方程的系数决定。实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。可行
4、的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的19。系统的稳态输出是指当 nT如时,系统的输出。如果系统稳定,信号加入系统后,系统输 出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。注意在以下实验中均假设系统的初始状态为零。3 .实验内容及步骤(1)编制程序,包括产生输入信号、 单位脉冲响应序列的子程序,用filter函数或conv函数求解系统输出响应的主程序。程序中要有绘制信号波形的功能。(2)给定一个低通滤波器的差分方程为y(n) =0.05x(n) 0.05x(n -1) 0.9y(n-1)输入信号x,n)=R8(n
5、)x2(n) = u(n)a)分别求出系统对xi(n) = R(n)和x2(n) =u(n)的响应序列,并画出其波形。b)求出系统的单位冲响应,画出其波形。(3)给定系统的单位脉冲响应为hi(n) =Ri0(n)h2(n) =、(n) 2.5、(n-1) 2.5、(n - 2) 、(n - 3)用线性卷积法分别求系统hi(n)和h2(n)对x1 (n) = R8(n)的输出响应,并画出波形。(4)给定一谐振器的差分方程为y(n) =1.8237y(n -1) - 0.9801y(n - 2) b0x(n) - b0x(n - 2)令b0 =1/100.49,谐振器的谐振频率为0.4rad。a)
6、用实验方法检查系统是否稳定。输入信号为 u(n)时,画出系统输出波形。b)给定输入信号为x(n) =sin(0.014n) sin(0.4n)求出系统的输出响应,并画出其波形。4 .思考题(1)如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积 法求系统的响应?如何求?(2)如果信号经过低通滤波器,把信号的高频分量滤掉,时域信号会有何变化,用前面第一个实验结果进行分析说明。5.实验报告要求(1)简述在时域求系统响应的方法。(2)简述通过实验判断系统稳定性的方法。分析上面第三个实验的稳定输出的波形。(3)对各实验所得结果进行简单分析和解释。(4)简要回答思考题。(5)打印程
7、序清单和要求的各信号波形。1.1.2 2实验程序清单%实验1:系统响应及系统稳定性close all;clear all%=内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性=A=1,-0.9;B=0.05,0.05;%系统差分方程系数向量B和Ax1n=1 1 1 1 1 1 1 1 zeros(1,50);% 产生信号 x1(n)=R8(n)x2n=ones(1,128);%产生信号 x2(n)=u(n)hn=impz(B,A,58); %求系统单位脉冲响应h(n)subplot(2,2,1);y=h(n);tstem(hn,y);%调用函数 tstem 绘图title(a
8、)系统单位脉冲响应h(n);box ony1n=filter(B,A,x1n);% 求系统对 x1(n)的响应 y1(n)subplot(2,2,2);y=y1(n);tstem(y1n,y);title(b)系统对 R8(n)的响应 y1(n);box ony2n=filter(B,A,x2n);% 求系统对 x2(n)的响应 y2(n)subplot(2,2,4);y=y2(n);tstem(y2n,y);title(c)系统对 u(n)的响应 y2(n);box on%=内容 2:调用 conv 函数计算卷积=x1n=1 1 1 1 1 1 1 1 ;% 产生信号 x1(n)=R8(n)
9、h1n=ones(1,10) zeros(1,10);h2n=1 2.5 2.5 1 zeros(1,10);y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)subplot(2,2,1);y=h1(n);tstem(h1n,y);%调用函数 tstem 绘图title(d)系统单位脉冲响应h1(n);box onsubplot(2,2,2);y=y21(n);tstem(y21n,y);title(e) h1(n)与 R8(n)的卷积 y21(n);box onsubplot(2,2,3);y=h2(n);tstem(h2n,y);%调用函数 ts
10、tem 绘图title(f)系统单位脉冲响应h2(n);box onsubplot(2,2,4);y=y22(n);tstem(y22n,y);title(g) h2(n)与 R8(n)的卷积 y22(n);box on%=内容 3:谐振器分析=un=ones(1,256);% 产生彳t号 u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); % 产生正弦信号A=1,-1.8237,0.9801;B=1/100.49,0,-1/100.49;% 系统差分方程系数向量B 和 Ay31n=filter(B,A,un);% 谐振器对 u(n)的响应 y31(n)y32n
11、=filter(B,A,xsin);% 谐振器对 u(n)的响应 y31(n)figure(3)subplot(2,1,1);y=y31(n);tstem(y31n,y);title(h)谐振器对 u(n)的响应 y31(n);box onsubplot(2,1,2);y=y32(n);tstem(y32n,y);title(i)谐振器对正弦彳t号的响应y32(n);box on1.1.3 3实验程序运行结果及分析讨论程序运行结果如图10.1.1所示。实验内容(2)系统的单位冲响应、系统对x1 (n) = R8(n)和x2(n) = u(n)的响应序列分别如图(a)、(b)和(c)所示;实验内
12、容(3)系统hi(n)和h2(n)对x(n) = Rg (n)的输出响应分别如图(e)和(g)所示;实验内容(4)系统对u(n)和x(n)=sin(0.014n)+sin(0.4n)的响应序列分别如图 (h)和(i)所示。由图(h)可见,系统对u(n)的响应逐渐衰减到零,所以系统稳定。由图(i)可见,系统对x(n) =sin(0.014n) +sin(0.4n)的稳态响应近似为正弦序列sin(0.4n),这一结论验证了该系统的谐振频率是0.4 rad。(a)系统单位脉冲响应h(n)0.10.080.060.040.022040n39y(i)谐振器对正弦信号的响应y32(n)10.5-0.550
13、100150200250y 0图 10.1.11.1.4 4简答思考题(1)如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积法求系统的响应。对输入信号序列分段;求单位脉冲响应 h(n)与各段的卷积;将各段卷积结果相加。具体实现方法有第三章介绍的重叠相加法和重叠保留法。(2)如果信号经过低通滤波器,把信号的高频分量滤掉,时域信号的剧烈变化将被平滑,由实验内容(1)结果图10.1.1(a)、(b)和(c)可见,经过系统低通滤波使输入信号6(n)、X(n) = R (n)和X2(n) = u(n)的阶跃变化变得缓慢上升与下降。10.2 实验二时域采样与频域采样10.2.1 实
14、验指导1 .实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。2 .实验原理与方法时域采样定理的要点是:a)对模拟信号xa(t)以间隔T进行时域等间隔理想采样,形成的采样信号的频谱*( jC)是原模拟信号频谱 X a( j G )以采样角频率 建s (C s = 2冗/T )为周期进行周期延拓。公式为:&(jj) =FTXa(t) J v?Xa(jJ -jn-s) T n :b)采样频率Cs必须大于等于模
15、拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。理想采样信号 2(t)和模拟信号xa(t)之间的关系为:cd?a(t) = Xa(t)、(t -nT)n 二一二二对上式进行傅立叶变换,得到:寅a(j,)= JXa(t)v t-nT)ejtdt-n 二一二二=Z CXa(t)5(t megn =在上式的积分号内只有当 t =nT时,才有非零值,因此:cO/a,)_Xa(nT)eTnTn =-二上式中,在数值上 xa(nT) = x(n),再将 =CT代入,得至U:0a(j)=M , xN(n)比原序列尾部
16、多 N-M个零点;如果 NM , z则 xn (n) =IDFT Xn (k)发生了时域混叠失真, 而且xn (n)的长度N也比x(n)的长度 M短,因此。xN(n)与x(n)不相同。在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的 要点。对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论 具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。因此放在一起进行实 验。3 .实验内容及步骤(1)时域采样理论的验证。给定模拟信号,xa(t) = Aet sin0t)u(t)式中A=444.128, ct =50 2兀,0 0=5072
17、兀rad/s ,它的幅频特性曲线如图10.2.10100 200 30Q 40U 5OT/Hi图10.2.1Xa(t)的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。安照Xa(t)的幅频特性曲线,选取三种采样频率,即Fs=1kHz, 300Hz, 200HZo观测时间选Td =50ms。p为使用dft ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用 Xi(n), X2(n) , X3(n)表示。x(n) = Xa (nT) = Ae3T sin(C0nT)u(nT)因为采样频率不同,得到的Xi(n) , X2(n), X3(n)的长度不同,长度
18、(点数)用公式N =Tp MFs计算。选FFT的变换点数为 M=64 ,序列长度不够64的尾部加零。X(k)=FFT x(n) ,k=0,1,2,3,-, M-1式中k代表的频率为 8 k2二 k 。M要求:编写实验程序,计算Xi(n)、X2(n)和X3(n)的幅度特性,并绘图显示。观察分析频谱混叠失真。(2)频域采样理论的验证。给定信号如下:n 1x(n) = 27 -n00 -n -1314 n 26其它编写程序分别对频谱函数X(ejC0) =FTx(n)在区间0,2n上等间隔采样32和 16 点,得到 X32(k)和X16(k):X32(k) = X(ej )2.=cc k32k -0,
19、1,2,11131Xi6(k) =X(ej )k =0,1,2,|15再分别对X32(k)和X16(k)进彳,亍32点和16点IFFT,得到x32(n)和x16(n):X32(n)= I FFT32k(3)2n ,IH 0,1, 2,31xMnh IFFTXLk(An ,l| 0,1, 2,15分别画出 X(ejK)、X32*)和X16(k) 的幅度谱,并绘图显小x(n)、X32(n)和X16 (n)的波形,进行对比和分析,验证总结频域采样理论。提示:频域采样用以下方法容易变程序实现。直接调用MATLAEK数ft计算X32(k) = FFTx(n)32就得到X(e心)在0,2n的32 点频率域
20、采样抽取X32(k)的偶数点即可得到 X(ej)在02的16点频率域采样 X16(k),即X16(k)=X32(2k) , k = 0,1,2,111,15。 当然也可以按照频域采样理论,先将信号x(n)以16为周期进行周期延拓,取其主值区(16点),再对其进行16点DFT(FFT),得至IJ的就是X(ej)在0,2冗的16点频率域采样X16(k)。4 .思考题:如果序列x(n)的长度为M,希望得到其频谱 X(ej)在0,2扪上的N点等间隔采样,当N1_0102030200 rk32点频域采样(f) 32 点 IDFTftk)1000L0 51015k20CNCOX11101020n111*.
21、”.30图 10.3.3该图验证了频域采样理论和频域采样定理。对信号x(n)的频谱函数 X(ej3)在0,2兀上等间隔采样N=16时,N点IDFT Xn*)得到的序列正是原序列x(n)以16为周期进行周期延拓后的主值区序列:XN(n) =IDFT Xn(Qnx(n iN)RN(n)i -.:由于NM ,频域采样定理,所以不存在时 域混叠失真,因此。 M(n)与x(n)相同。10.2.4 简答思考题先对原序列x(n)以N为周期进行周期延拓后取主值区序列,xN(n) x(n iN)RN(n) i -.:再计算N点DFT则得到N点频域采样:XN(k) =DFTxN(n)N =X(ej )_2二k ,
22、 k =0,1,2,|I|,N -1-N10.3 实验三:用FFT对信号作频谱分析10.3.1 实验指导1 .实验目的 学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。2 .实验原理用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D和分析误差。频谱分辨率直接和 FFT的变换区间N有关,因为FFT能够实现的频率分辨率是 2n/ N ,因 此要求2n/N D o可以根据此式选择 FFT的变换区间N。误差主要来自于用 FFT作频谱 分析时,得到的是离
23、散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的包络才能逼近于连续谱,因此 N要适当选择大一些。周期信号的频谱是离散谱, 只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。3 .实验步骤及内容(1)对以下序列进行谱分析。Xi(n)= R4(n)n 1, 0 n 3x2 (n) = 8 n, 4 n 70 ,其它n4 -n, 0 _ n _ 3x3(n)
24、 = n -3, 4 n 70,其它n选才i FFT的变换区间N为8和16两种情况进行频谱分析。分别打印其幅频特性曲线。 并进行对比、分析和讨论。(2)对以下周期序列进行谱分析。x4(n) = cos nx5(n) u cos(二 n/4) cos(二 n/8)选才i FFT的变换区间N为8和16两种情况分别对以上序列进行频谱分析。分别打印 其幅频特性曲线。并进行对比、分析和讨论。(3)对模拟周期信号进行谱分析x6(t) = cos8二 t cos16二 t cos20二 t选择 采样频率Fs =64Hz,变换区间N=16,32,64三种情况进行谱分析。分别打印其幅频 特性,并进行分析和讨论。
25、4 .思考题(1)对于周期序列,如果周期不知道,如何用 FFT进行谱分析?(2)如何选择FFT的变换区间?(包括非周期信号和周期信号)(3)当N=8时,x2(n)和x3(n)的幅频特性会相同吗?为什么? N=16呢?5 .实验报告要求(1)完成各个实验任务和要求。附上程序清单和有关曲线。(2)简要回答思考题。10.3.2 实验程序清单%第10章实验3程序exp3.m%用FFT对信号作频谱分析clear all;close all%实验内容(1)= x1n=ones(1,4);%产生序列向量 x1(n)=R4(n)M=8;xa=1:(M/2);xb=(M/2):-1:1; x2n=xa,xb;
26、%产生长度为 8 的三角波序列 x2(n)x3n=xb,xa;X1k8=fft(x1n,8);X1k16=fft(x1n,16);X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);%以下绘制幅频特性曲线%计算x1n的8点DFT%计算x1n的16点DFT%计算x2n的8点DFT%计算x2n的16点DFT%计算x3n的8点DFT%计算x3n的16点DFTsubplot(2,2,1);stem(X1k8); % 绘制 8 点 DFT 的幅频特性图 title(1a) 8 点 DFTx_1(n);xlabel( 3
27、/无);ylabel(幅度); axis(0,2,0,1.2*max(abs(X1k8)subplot(2,2,3);stem(X1k16); % 绘制 16 点 DFT 的幅频特性图 title(1b)16 点 DFTx_1(n);xlabel( 3 / 无);ylabel(幅度); axis(0,2,0,1.2*max(abs(X1k16) figure(2)subplot(2,2,1);stem(X2k8); % 绘制 8 点 DFT 的幅频特性图title(2a) 8 点 DFTx_2(n);xlabel( 3 /无);ylabel(幅度);axis(0,2,0,1.2*max(abs
28、(X2k8)subplot(2,2,2);stem(X2k16); % 绘制 16 点 DFT 的幅频特性图title(2b)16 点 DFTx_2(n);xlabel( 3 / 无);ylabel(幅度);axis(0,2,0,1.2*max(abs(X2k16)subplot(2,2,3);stem(X3k8); % 绘制 8 点 DFT 的幅频特性图title(3a) 8 点 DFTx_3(n);xlabel( 3 /无);ylabel(幅度);axis(0,2,0,1.2*max(abs(X3k8)subplot(2,2,4);stem(X3k16); % 绘制 16 点 DFT 的幅
29、频特性图 title(3b)16 点 DFTx_3(n);xlabel( 3 / 无);ylabel(幅度);axis(0,2,0,1.2*max(abs(X3k16)%实验内容周期序列谱分析=N=8;n=0:N-1;%FFT 的变换区间 N=8x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n);%计算 x4n 的 8 点 DFTX5k8=fft(x5n);%计算 x5n 的 8 点 DFTN=16;n=0:N-1;%FFT 的变换区间 N=16x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8)
30、;X4k16=fft(x4n);%计算 x4n 的 16 点 DFTX5k16=fft(x5n);%计算 x5n 的 16 点 DFTfigure(3)subplot(2,2,1);stem(X4k8); % 绘制 8 点 DFT 的幅频特性图title(4a) 8 点 DFTx_4(n);xlabel( 3 /无);ylabel(幅度);axis(0,2,0,1.2*max(abs(X4k8)subplot(2,2,3);stem(X4k16); % 绘制 16 点 DFT 的幅频特性图title(4b)16 点 DFTx_4(n);xlabel( 3 / 无);ylabel(幅度);axi
31、s(0,2,0,1.2*max(abs(X4k16)subplot(2,2,2);stem(X5k8); % 绘制 8 点 DFT 的幅频特性图title(5a) 8 点 DFTx_5(n);xlabel( 3 /无);ylabel(幅度);axis(0,2,0,1.2*max(abs(X5k8)subplot(2,2,4);stem(X5k16); % 绘制 16 点 DFT 的幅频特性图title(5b)16 点 DFTx_5(n);xlabel( 3 / 无);ylabel(幅度);axis(0,2,0,1.2*max(abs(X5k16)%实验内容模拟周期信号谱分析=figure(4)
32、Fs=64;T=1/Fs;N=16;n=0:N-1;%FFT 的变换区间 N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);%对 x6(t)16 点采样X6k16=fft(x6nT); %计算 x6nT 的 16 点 DFTX6k16=fftshift(X6k16);%将零频率移到频谱中心Tp=N*T;F=1/Tp; %频率分辨率 Fk=-N/2:N/2-1;fk=k*F;%产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,1);stem(fk,abs(X6k16),);box on % 绘制 8 点 DFT 的幅
33、频特性图title(6a) 16 点 |DFTx_6(nT);xlabel(f(Hz);ylabel(幅度);axis(-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k16)N=32;n=0:N-1;%FFT 的变换区间 N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);%对 x6(t)32 点采样X6k32=fft(x6nT); %计算 x6nT 的 32 点 DFTX6k32=fftshift(X6k32);%将零频率移到频谱中心Tp=N*T;F=1/Tp; %频率分辨率 Fk=-N/2:N/2-1;fk=k*F;
34、%产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,2);stem(fk,abs(X6k32),);box on % 绘制 8 点 DFT 的幅频特性图title(6b) 32 点 |DFTx_6(nT);xlabel(f(Hz);ylabel(幅度);axis(-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k32)N=64;n=0:N-1;%FFT 的变换区间 N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);%对 x6(t)64 点采样X6k64=fft(x6nT); %计算 x6nT 的
35、64 点 DFTX6k64=fftshift(X6k64);%将零频率移到频谱中心Tp=N*T;F=1/Tp; %频率分辨率 Fk=-N/2:N/2-1;fk=k*F;%产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,3);stem(fk,abs(X6k64),); box on% 绘制 8 点 DFT 的幅频特性图title(6a) 64 点 |DFTx_6(nT);xlabel(f(Hz);ylabel(幅度);axis(-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k64)10.3.3 实验程序运行结果实验3程序exp3.m运行结果如图10.3.1所示。不3200.511.5w/tt(2电电点口尸丁江幺(2时15点口产丁七01)UW/TT破 3点口FT|mQ11.52