1、2.2 正弦量的相量表示法,瞬时值表达式,前两种不便于运算,重点介绍相量表示法。,波形图,.正弦量的表示方法,相量,2.正弦量用旋转有向线段表示,设正弦量:,若:有向线段长度 =,则:该旋转有向线段每一瞬时在纵轴上的投影即表示相应时刻正弦量的瞬时值。,有向线段与横轴夹角 = 初相位,u0,3. 正弦量的相量表示,复数表示形式,设A为复数:,实质:用复数表示正弦量,式中:,(2) 三角式,由欧拉公式:,(3) 指数式,可得:,设正弦量:,相量: 表示正弦量的复数称相量,电压的有效值相量,相量只是表示正弦量,而不等于正弦量。,注意:,?,只有正弦量才能用相量表示, 非正弦量不能用相量表示。,只有同
2、频率的正弦量才能画在同一相量图上。,相量的书写方式, 模用最大值表示 ,则用符号:,相量的两种表示形式,相量图: 把相量表示在复平面的图形, 实际应用中,模多采用有效值,符号:,可不画坐标轴,如:已知,旋转 因子:,“j”的数学意义和物理意义,设相量,正误判断,1.已知:,?,有效值,?,3.已知:,复数,瞬时值,j45,?,最大值,?,?,负号,解: (1) 相量式,(2) 相量图,例1: 将 u1、u2 用相量表示,例2: 已知,有效值 I =16.8 A,求:,例3:,图示电路是三相四线制电源, 已知三个电源的电压分别为:,试求uAB ,并画出相量图。,(2) 相量图,由KVL定律可知,