收藏 分享(赏)

油罐检测爬壁机器人结构与控制系统设计.pdf

上传人:HR专家 文档编号:11810030 上传时间:2021-01-21 格式:PDF 页数:6 大小:278.54KB
下载 相关 举报
油罐检测爬壁机器人结构与控制系统设计.pdf_第1页
第1页 / 共6页
油罐检测爬壁机器人结构与控制系统设计.pdf_第2页
第2页 / 共6页
油罐检测爬壁机器人结构与控制系统设计.pdf_第3页
第3页 / 共6页
油罐检测爬壁机器人结构与控制系统设计.pdf_第4页
第4页 / 共6页
油罐检测爬壁机器人结构与控制系统设计.pdf_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、cI|: 1002-0446(2004) 05-0385-06 7_Ced !9X 田兰图, 杨向东, 赵建东, 赖庆文, 陈恳 (bvN/ ,100084) K 1:?C_/ #d,4 v7CMT ?ZE,i s FT, !9 98ed.dHC8,d ( T _/ ,i!.,!? .C LV ,d1a VLa,v4 _r q. 1oM:C; _;F;( e ms|: TP24 DS M : B Structure and Control System Design of a Wall Climbing Robot for Oilcan Testing TIAN Lan-tu, YANG Xi

2、ang-dong, ZHAO Jian-dong, LAI Qing-wen, CHEN Ken ( Institute of Manuf acturing Engineering , Depar tment of Precision I nstruments and Mechanology, Tsinghua University , Beij ing 100084, China) Abstract: The testing technology and the system of intelligent wall climbing robot are studied in this pap

3、er. A path planning method for motion on vertical walls is presented, thefunction of theant-i upset deviceis analyzed, and thegeneral structure and control system is designed. Its main body is a wall climbing robot using permanent magnetictracks. A non- contact NDT ( non-destructivetesting) technolo

4、gy and various sensors areapplied to this robot, which give it high intell-i gence. Field experiments indicatethat theequipment is in highly automatic level. It can movestably, has a high localiza- tion precision, and greatly improves theefficiency of oilcan testing. Keywords: wall climbing robot; n

5、on-destructive testing(NDT); ant-i upset device; attitude control 1 ( Introduction) 7 FKn%i !, T# S K,7CV? 3 a a=dJ,tJ/ P, .V?,yNA_ .-,7_( LC,qy m O,r qOB. F ? Z,_/ 1p9,1 _ ! A.k7_+,1 _d1%/Bt1o/ : (1)VL8,?v5 ! z_hR7=V ,i B; (2)d8la kZLa:a_ r qa; (3)_ZE?7C/ , O a T 1. bv1 L iv 71_dTH- Climber HC 8,|

6、_/ 7_,z % B5.? _ !M1, d .d?,_ 2VL V1E ;N, _/ ?_h7C ( f/,V V J,V7 h 4 VLp.C LV , d?,VL,vv4 7_ r q. 265 2004M9机器人 ROBOT Vol.26, No. 5 Sept., 2004 X l:2004- 01- 15 2 981oq( General structure and key components) 2. 198Z v7=C1_, 7_C!3Z ?, _a. _/ Hx_6a L_ 7a 2o_8a _9.t_Z E, _1Fah C (,y7 aC y . CZ T1 4Vb a

7、HaHaw.M Z T,Hva sV Y ladiY.7C ,V ,Ov,y7d aH. CYZ T 1 4 Ta k Ta TaO T. k TC 5aeaeZLa y, 1 A,KW. 8s7_ L=1CH q, k THC,i _ Z T K L=VLZ. GN98Z !98m 1 U. m1 8 Fig. 1 Structureof therobot body 8P- ,sY H8v kY,q.z Z T,9 (m Z ) z , sYB YVoh z.8C B, _F q,FqYV l h LZ_ M, _TL?71 LC. N,1_,CA !B?,1 a1 MY8 )(1 8 77

8、). LCt?,1 .,V1 U. V1 . Table 1 Sensors of the robot . T? |9AGI( S)S( S: ? 25b: 0. 01b ; 71h 8 r77 : 10cm CMOS h + L HA U T L. j? 2. 2 F C H,1toBt? 5V j,T/C . E C, sY BH ,m2(b) U. . *F,TVYVm2s .m, G#9 , M k C r, fC kC r, N F HC kC r, R1 R2sY FC kC r, L- , HC W, S . 1 F- ?4 KvF,L ! f()J ,N H kC sC s 1

9、0 .A,m( a)V4KvF : TR 1max = M L6 (1) 7m( b),FVVr: T R2 = R1 L6 + R2 L2 + S 386 2004M9 = R1 L6 + ( M - R1) L2 + S (a) (b) m2 Fs Fig. 2 Analysis of the ant-i upset device Jt F H, R1|hl, HR2 9v. H,F Z TVs f) . (1) f/, V1,E 84E.yNR1?lG/ L, 5|C /,L kV C . !S= L /2,5KvF: TR 2max = M - 56 GL L = M L6 + M -

10、 GL 5L6 ( 2) (2)% H, ?,V4FT ,L ! C W 9 L,5 R1aR28M,9 , O9?/.R1= 0 H,C T ,FKv, !S = L /2,: T R2max = M L2 + S = M L ( 3) FF H6.N,V f 1 V :F % H,zF?. 3 ?( Path planning) ?1 7C Z T?.V? Z : 6 T / T. ZsV : 6 T aeea_r q, 1a/ P_O 8J;7 / T5zM Q.7_ H,1 ?_ ,7 ,yN / TM . / H,M # LWp7B z,m3 UZ T LC. m, S / _ ,r

11、7 H, ;717, V7(?1Q_,YV LC LW_M. , LMM,BeZ E MM LC., B z, R, 5 VM H ( , VLaVRsYP L , DX DYsYV_:_M . m3 ? Fig.3 Path planning of the robot _TeVV : ( 1)r7,;71 J, (?; ( 2)z Q_,iMP vl, B ,r5; ( 3)M ,= , 0,N HX LCDXM ; ( 4)z Q_,_ DY, V :_M/ P_; ( 5)z QQ_,|0,_ /. r7,eV M . Vm+1Ve : 387 265Bm: 7_Ced R+ B/2 R

12、- B/2= n2 n1= k R= 1+ 2 k- 1 B 2 ( 4) DX 2 = R (1- cos) = arccos 1- DX 2R ( 5) DY 2= R 2- R- DX 2 2 DY= DX (4R-DX ) ( 6) T, n1an 2 , k=1. 3 T, n5 L s# ,DXK9 5#: _M DY,KI LC eV. 4 ed( Control system) 4. 1 q ed / 8, e,e9 , Sa? Se;/e5,3 ea|).=YVRS232Y, 4. ,. L RS2329,V |RS232. 41km . e5CAN9LaRS232gaDAa

13、ADa a 3I/Oa g,.d8.d8m m4 U.dV? Vsea _ 3s. m4 edq Fig.4 Hardware structureof the control system 4. 2 I / PBALDOR 7? eMintMTI, LC a a( e. VB6.0/7?GUI ,? S ae/a|A U .7? H,| kIrzMintMT/e5 i%=, e; Y VMintMTActiveXeq/g,i e5eof .BI Vm5 , ya q. m6 UdGUI . Vs /3s, A Uu, A Ua( , 7,JUS;/eu, YVMTV1 m e TW M,T ,

14、 _ i7Jsm. m5 I Fig. 5 Software architecture 4. 3 ( e E !9 !8 L sYv 1v 2, H R,58( VVr: X= . = v 1+ v 22R | T T,iI nv 2= kv 1,# 7k - 1 388 2004M9 = $k,: X= $k v 1B ( 7) yN,8 $k1.3 !9 PID( e B y,m7 m. m6 dGUI Fig.6 GUI of thesystem m7 PID( e Fig.7 PID attitude controller e Roberts P D4BB E, LrT. eerT,3

15、e !9| /BtZE. B,M s E. X 9 PID Ts H,E( k)- F B c, c| / T: c = 1 A | E( k) |+ B A 0 | E( k) | B B A + B ( 8) ABV L=erT,3 |A = 1baB= 0. 5b.B E LC 1Thv,sThl X+,VzhsC,vvh l 11 . =, ! u.9lB l H,( ,Q S HPIDe.3 !9 |0. 05b.B EE VNe T,V7h NT/ 11. , !e K. PIDe $k, M .v H,vPID T9 | $k |9v, Mv. C v,V7 k C 7CWiv,

16、8 4 2_,T 1v,/5 . E C,V| $k| !B K $kmax: $k = - $kmax $k $kmax $k $kmax (9) 5 L ( Experiment and conclusion) !9, C TH_Climber,i L 7C v L.m8A U 7=f. m8 TH- Climber I#C Fig. 8 TH- Climber I and its field application m9 msY1 F( ( HWMwL.VA, 1 /,i , S T;F( , S , ,( (0b)lM. 389 265Bm: 7_Ced m9 ( e LrT Fig.

17、9 Experiment effect of theattitude controller m105C LJ _ |mL. msYV Lm# _|,/ md L# _|._TV ,dVr_ C J; H,Md7, _V F ,_ q. L _| d L d_| m10 J# _| Fig.10 Typical defects and their eddy signals LCV , TH- Climber a:Kv Vr8m/min,Vt10mm o V jp,Ve? 0. 2b=. d _NVy V_ z0. 5mma 0. 5mm 1mmd .?_dz 71 _1, ),S,.C/ J.,

18、 1999, 21(2): 148- 155. 3 !,bV,u,.HCC J., 1994, 16(6): 379- 382. 4f.S=C M T?ZJ./ , 1994, 16(1): 27- 31. 5,u,. CC8 ! 9J. !9/, 2000, 29(5): 7- 10. 6 S _.5 S _ m6r ,. S _ m(Hx) M. Z: Z Wm , 1994. 7 .C L_/ M.:SS , 1999. 8S _. 2o M .: , 1987. 9S _. _M.: , 1986. 10,W,. !9M .:0 , 1995. 11 ,Y.9 e/ M.:0 , 2003. Te: 田兰图 ( 1980-) ,男,硕士研究生. 研究领域:机电智能控 制,特种机器人,爬壁机器人. 陈 恳 ( 1954-),男,教授,博士生导师. 研究领域:仿人机 器人,微操作机器人,生物机器人,机电一体化技 术, PDM. 390 2004M9

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 学术论文 > 管理论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报