1、用心智的力量,为自己的理想做点事情中小学成才教育专家 专注学习的每一个细节二次函数考查重点与常见题型1 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以为自变量的二次函数的图像经过原点, 则的值是 2 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数的图像在第一、二、三象限内,那么函数的图像大致是( ) y y y y 1 1 0 x o-1 x 0 x 0 -1 x A B C D3 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一
2、条抛物线经过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。4 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线(a0)与x轴的两个交点的横坐标是1、3,与y轴交点的纵坐标是(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标. 5考查代数与几何的综合能力,常见的作为专项压轴题。【例题经典】【由抛物线的位置确定系数的符号】例1 (1)二次函数的图像如图1,则点在( ) A第一象限 B第二象限 C第三象限 D第四象限 (2)已知二次函数y=ax2+bx+c(a0)的图象如图2所示,则下列结论:a、b同号;当x=1和x=
3、3时,函数值相等;4a+b=0;当y=-2时,x的值只能取0.其中正确的个数是( )A1个 B2个 C3个 D4个 (1) (2)【点评】弄清抛物线的位置与系数a,b,c之间的关系,是解决问题的关键例2.已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,O)、(x1,0),且1x12,与y轴的正半轴的交点在点(O,2)的下方下列结论:abO;4a+cO,其中正确结论的个数为( ) A 1个 B. 2个 C. 3个 D4个【会用待定系数法求二次函数解析式】例3.已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=-2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的
4、顶点坐标为( ) A(2,-3) B.(2,1) C(2,3) D(3,2)例4、(2006年烟台市)如图(单位:m),等腰三角形ABC以2米/秒的速度沿直线L向正方形移动,直到AB与CD重合设x秒时,三角形与正方形重叠部分的面积为ym2(1)写出y与x的关系式;(2)当x=2,3.5时,y分别是多少?(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?求抛物线顶点坐标、对称轴.例5、已知抛物线y=x2+x-(1)用配方法求它的顶点坐标和对称轴(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一
5、元二次方程的关系例6.已知:二次函数y=ax2-(b+1)x-3a的图象经过点P(4,10),交x轴于,两点,交y轴负半轴于C点,且满足3AO=OB(1)求二次函数的解析式;(2)在二次函数的图象上是否存在点M,使锐角MCOACO?若存在,请你求出M点的横坐标的取值范围;若不存在,请你说明理由例7、 “已知函数的图象经过点A(c,2), 求证:这个二次函数图象的对称轴是x=3。”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。(2)请你根据已有的信息,在原题中的矩
6、形框中,填加一个适当的条件,把原题补充完整。点评: 对于第(1)小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是x=3”当作已知来用,再结合条件“图象经过点A(c,2)”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式。对于第(2)小题,只要给出的条件能够使求出的二次函数解析式是第(1)小题中的解析式就可以了。而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等。【用二次函数解决最值问题】例1已知边长为4的正方形截去一个角后成为五边形ABCDE
7、(如图),其中AF=2,BF=1试在AB上求一点P,使矩形PNDM有最大面积【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力同时,也给学生探索解题思路留下了思维空间例2 某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元)152030y(件)252010 若日销售量y是销售价x的一次函数 (1)求出日销售量y(件)与销售价x(元)的函数关系式; (2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元? 【点评】解决最值问题应用题的思路与一般应用题类似,也
8、有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;(2)问的求解依靠配方法或最值公式,而不是解方程例3.你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、25 m处绳子在甩到最高处时刚好通过他们的头顶已知学生丙的身高是15 m,则学生丁的身高为(建立的平面直角坐标系如右图所示)( )A15 m B1625 mC166 m D167 m分析:本题考查二次函数的应用在这里学会做人 学会共处学会求知 学会生存典学教育万科城校区 咨询热线:0755 - 8958 0101 曹老师典学教育万科城校区 电子邮箱:dianxue_典学教育万科城校区 地址:深圳坂田万科城南门商业街C7#-114119第4页