1、2013年高考数学试题分类汇编及答案解析(解三角形)姓名: 沈金鹏 院 、 系: 数学学院 专业: 数学与应用数学 2015年10月10日正弦定理和余弦定理一、选择题1.(2013北京高考文科5)在ABC中,a=3,b=5,sinA=,则sinB=( )A. B. C. D.1【解题指南】已知两边及一边的对角利用正弦定理求解。【解析】选B。由正弦定理得。2.(2013新课标全国高考文科4)的内角的对边分别为,已知,则的面积为( )A. B. C. D.【解题指南】利用正弦定理和三角形的面积公式可得【解析】选B.因为,所以.由正弦定理得,解得。所以三角形的面积为.因为,所以,选B.3.(2013
2、新课标高考文科10)已知锐角ABC的内角A,B,C的对边分别为,c=6,则( )A.10B.9C.8D.5【解题指南】由,利用倍角公式求出的值,然后利用正弦定理或余弦定理求得的值.【解析】选D.因为,所以,解得,方法一:因为ABC为锐角三角形,所以,.由正弦定理得,.,.又,所以,.由正弦定理得, ,解得.方法二:由余弦定理,则,解得4.(2013陕西高考文科9)【备注:(2013陕西高考理科7)与之题干相同】设ABC的内角A, B, C所对的边分别为a, b, c, 若, 则ABC的形状为 ( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不确定【解题指南】在含有边角关系式的三角函
3、数恒等变形中,利用正弦定理将边的关系式化为角的正弦式或利用余弦定理将余弦式化为边的关系式,这是判断三角形形状的两个转化方向.【解析】选A.因为bcosC+ccosB=asinA,所以由正弦定理得sinBcosC+sinCcosB=sin2A,所以sin(B+C)=sin2A,sinA=sin2A, sinA=1,所以三角形ABC是直角三角形.5.(2013安徽高考文科9)【备注:(2013安徽高考理科12)与之题干相同】设ABC的内角A,B,C所对边的长分别为a,b,c.若b+c=2a,则3sinA=5sinB,则角C=()A. B. C. D. 【解题指南】 根据正弦定理、余弦定理进行解三角
4、形计算。【解析】选B.由题设条件可得,由余弦定理得,所以。6. (2013山东高考文科7)的内角的对边分别是,若,则( )A. B. 2 C. D.1【解析】选B.由,则,由正弦定理知,即,所以cosA=,所以A=,所以,所以,c=2.7.(2013湖南高考理科3)在锐角中,角所对的边长分别为.若( )A B C D【解题指南】本题先利用正弦定理化简条件等式,注意条件“锐角三角形” . 【解析】选D.由2asinB=b得2sinAsinB=sinB,得sinA=,所以锐角A=.8. (2013天津高考理科6)在ABC中, 则 = ()A. B. C. D. 【解题指南】先由余弦定理求AC边长,
5、然后根据正弦定理求值.【解析】选C. 在ABC中,由余弦定理得,所以由正弦定理得即所以.9. (2013湖南高考文科5)在锐角ABC中,角A,B所对的边长分别为a,b. 若2asinB=b,则角A等于( )A. B. C. D.【解题指南】本题先利用正弦定理化简条件等式,注意条件“锐角三角形” . 【解析】选A.由2asinB=b得2sinAsinB=sinB,得sinA=,所以锐角A=.二、填空题10.(2013浙江高考理科T16)在ABC中,C=90,M是BC的中点.若,则sinBAC=.【解题指南】分别在RtABC和ABM中应用勾股定理和正弦定理.【解析】设AC=b,AB=c,BC=a,
6、在ABM中由正弦定理得,因为,又,所以.又由得,两边平方化简得4c4-12a2c2+9a4=0,所以2c2-3a2=0,所以.【答案】11.(2013上海高考理科T4)已知ABC的内角A,B,C所对应边分别为a,b,c,若3a2+2ab+3b2-3c2=0,则角C的大小是(结果用反三角函数值表示).【解析】3a2+2ab+3b2-3c2=0c2=a2+b2+ab,故【答案】12.(2013上海高考文科T5)已知ABC的内角A、B、C所对的边分别是a、b、c.若a2+ab+b2-c2=0,则角C的大小是 .【解析】【答案】 三、解答题13. (2013大纲版全国卷高考文科18)与(2013大纲版
7、全国卷高考理科18)相同设的内角,的对边分别为,(I)求;(II)若,求.【解题指南】(I)由条件确定求应采用余弦定理.(II)应用三角恒等变换求出及的值,列出方程组确定的值.【解析】(I)因为.所以.由余弦定理得,因此.(II)由(I)知,所以.故或,因此或14. (2013新课标高考理科17)如图,在中,为内一点,.()若,求;()若,求.【解析】由已知得,所以.在,由余弦定理得,故.()设,由已知得,在中,由正弦定理得,化简得,所以,即.15. (2013天津高考文科16)在ABC中, 内角A, B, C所对的边分别是a, b, c. 已知, a = 3, . () 求b的值; () 求
8、的值. 【解题指南】()根据正弦定理及, a = 3求出a,c的值,再由余弦定理求b的值;()根据同角三角函数的基本关系式及二倍角公式求出,再由两角差的正弦公式求值.【解析】() 在ABC中,由正弦定理得,即,又由,可得,,又 a = 3,故c=1,由且可得()由,得,进而得到所以16.(2013浙江高考文科T18)与(2013浙江高考理科T18)相同在锐角ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小.(2)若a=6,b+c=8,求ABC的面积.【解题指南】(1)由正弦定理易求角A的大小;(2)根据余弦定理,借助三角形的面积公式求解.【解析】(1)由2
9、asinB=b及正弦定理,得sinA=,因为A是锐角,所以.(2)由余弦定理a2=b2+c2-2bccosA,得b2+c2-bc=36,又b+c=8,所以,由三角形面积公式S=bcsinA,得ABC的面积为.17.(2013江西高考理科16)在ABC中,角A,B,C所对的边分别为a,b,c,已知.(1)求角B的大小;(2)若,求b的取值范围.【解题指南】(1)借助三角形内角和为,结合三角恒等变换将条件中的等式转化为只含B的方程,求出B的三角函数值,进而可求出角B.(2)根据(1)求出的B与,由余弦定理可得b2关于a的函数,注意到可知,进而可求出b的范围.【解析】(1)由已知得,即.因为,所以,
10、又,所以,又,所以.(2)由余弦定理,有,因为,,所以,又因为,所以,即.18. (2013江西高考文科17)在ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1.(1)求证:a,b,c成等差数列;(2)若C=,求的值.【解题指南】(1)先利用二倍角公式把角2B化为角B,再进行角化边的处理;(2)借助第(1)问的结果结合余弦定理进行求解.【解析】(1)由已知得sinAsinB+sinBsinC=2sin2B,因为sinB,所以sinA+sinC=2sinB,由正弦定理可知a+c=2b,即a,b,c成等差数列.(2) 由C=,c=2b-a及余弦定
11、理得,即有,所以.19.(2013北京高考理科15)在ABC中,a=3,b=2,B=2A.(I)求cosA的值,(II)求c的值【解题指南】(1)由条件可以看出,已知两角关系求角,可以利用正弦定理解决问题;(2)由已知两边和角求第三边,所以应用余弦定理求解。【解析】(1)由正弦定理得,所以,即.(2)由余弦定理得,所以,即,解得或(舍)。20.(2013新课标全国高考理科T17)ABC的内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB.(1)求B.(2)若b=2,求ABC面积的最大值.【解题指南】(1)将a=bcosC+csinB“边化角”,化简求得B.(2)利用角B、边b
12、将ABC面积表示出来,借助均值不等式求最大值.【解析】(1)因为a=bcosC+csinB,所以由正弦定理得:sinA=sinBcosC+sinCsinB,所以sin(B+C)=sinBcosC+sinCsinB,即cosBsinC=sinCsinB,因为sinC0,所以tanB=1,解得B=(2)由余弦定理得:b2=a2+c2-2accos,即4=a2+c2-ac,由不等式得a2+c22ac,当且仅当a=c时,取等号,所以4(2-)ac,解得ac4+2,所以ABC的面积为acsin(4+2)=+1.所以ABC面积的最大值为+1.解三角形应用举例一、填空题1. (2013福建高考理科T13)如
13、图,在ABC中,已知点D在BC边上,ADAC, sinBAC=,AB=,AD=3,则BD的长为. 【解题指南】显然,sinBAC=cosBAD,用余弦定理.【解析】sinBAC=cosBAD,在BAD中,BD2=AB2+AD2-2ABADcosBAD=18+9-23=3,所以BD=.【答案】 二、解答题2.(2013重庆高考理科20)在中,内角、的对边分别是、,且()求;()设,求的值【解题指南】直接利用余弦定理可求出的值,由和差公式及的值通过化简可求出的值.【解析】()因为由余弦定理有故.()由题意得因此因为,所以因为即解得由得,解得或.3. (2013重庆高考文科18)在ABC中,内角A,
14、B,C的对边分别是a,b,c,且a2=b2+c2+ab.()求;()设a=,S为ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.【解题指南】直接利用余弦定理可求出的值,再利用正弦定理求解S+3cosBcosC的最大值,并指出此时的值.【解析】()由余弦定理得又因为,所以()由()得又有正弦定理及得因此,所以,当,即时, 取最大值4. (2013山东高考理科17)设ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cosB=.(1)求a,c的值;(2)求sin(A-B)的值.【解题指南】(1)先由余弦定理可得到ac的关系式,再和已知a+c=6联立方程,可得a
15、,c的值;(2)由知,需先求出sinA,sinB,cosA,cosB的值,可先利用同角三角函数基本关系式求出sinB,然后由正弦定理求出sinA,进而求得cosA,从而本题得解.【解析】(1)由与余弦定理得,得又a+c=6,b=2,cosB=,所以ac=9,解得a=3,c=3.(2)在ABC中,,由正弦定理得.因为a=c,所以A为锐角.所以.因此.5.(2013福建高考文科21)如图,在等腰直角中, ,点在线段上.(I)若,求的长;(II)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.【解题指南】由等腰知,此时,可解;第(II)问,按“求什么设什么”列式求解,将面积表达式写
16、出,利用三角函数计算公式求解。【解析】()在中,由余弦定理得,得,解得或()设,在中,由正弦定理,得,所以,同理故因为,所以当时,的最大值为,此时的面积取到最小值即时,的面积的最小值为6.(2013江苏高考数学科T18)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量, ,.(1)求索
17、道AB的长.(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【解题指南】(1)利用正弦定理确定出AB的长.(2)先设再建立时间t与甲、乙间距离d的函数关系式,利用关系式求最值.(3)利用条件“使两位游客在C处互相等待的时间不超过3分钟”建立不等式求解.【解析】(1)在ABC中,因为cosA=,cosC=,所以sinA=,sinC=.从而sinB=sin-(A+C)=sin(A+C)=sinAcosC+cosAsinC=,由正弦定理=,得AB=sinC= =1040(m).所以索道AB的长为1040m.(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130tm,所以由余弦定理得d2=(100+50t)2+(130t)2-2130t(100+50t)=200(37t2-70t+50),因0t,即0t8,故当t= (min)时,甲、乙两游客距离最短.(3)由正弦定理=,得BC=sinA=500(m).乙从B出发时,甲已走了50(2+8+1)=550(m),还需走710m才能到达C.设乙步行的速度为vm/min,由题意得-3 3,解得所以为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在, (单位:m/min)范围内.