1、2018 年普通高等学校招生全国统一考试一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。12iA B C D43i543i534i534i52已知集合 ,则 中元素的个数为 2xyxyZ, , , AA9 B8 C5 D43函数 的图像大致为 2exf4已知向量 , 满足 , ,则ab|1ab(2)abA4 B3 C2 D05双曲线 的离心率为 ,则其渐近线方程为21(0,)xyabb3A B C D2yxyx2yx36在 中, , , ,则ABC5cos21BC5ABA B C D4302925开 始0, 0N T S NT
2、S输 出1i100i1NNi 11TTi结 束是 否7为计算 ,设计了右侧的程序框图,则在空白框中应填入1123490SA iB 2C 3iD 48我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如 在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是3072A B C D121415189在长方体 中, , ,则异面直线 与 所成角的余弦值为1CDA13A1ABA B C D15565210若 在 是减函数,则 的最大值是()cosinfxx,aaA B C D423411已知 是定义域为 的奇函数,
3、满足 若 ,则()fx(,)(1)()fxf(1)2f12350fffA B0 C2 D505012已知 , 是椭圆 的左,右焦点, 是 的左顶点,点 在过 且斜率1F221(0)xyCab: ACPA为 的直线上, 为等腰三角形, ,则 的离心率为3612PF 120FPA B C D23 314二、填空题:本题共 4 小题,每小题 5 分,共 20 分。13曲线 在点 处的切线方程为_2ln(1)yx(0,)14若 满足约束条件 则 的最大值为_,xy2503xy, zxy15已知 , ,则 _sinco1sin0sin()16已知圆锥的顶点为 ,母线 , 所成角的余弦值为 , 与圆锥底面
4、所成角为 45,若 的面积为SASB78SASAB,则该圆锥的侧面积为_51三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 1721 题为必考题,每个试题考生都必须作答。第 22、23 为选考题,考生根据要求作答。(一)必考题:共 60 分。17(12 分)记 为等差数列 的前 项和,已知 , nSna17a315S(1)求 的通项公式;n(2)求 ,并求 的最小值nSn18(12 分)下图是某地区 2000 年至 2016 年环境基础设施投资额 (单位:亿元)的折线图y为了预测该地区 2018 年的环境基础设施投资额,建立了 与时间变量 的两个线性回归模型根据 2000
5、 年至yt2016 年的数据(时间变量 的值依次为 )建立模型: ;根据 2010 年至 2016 年t127, , , 30.415t的数据(时间变量 的值依次为 )建立模型: t, , , 97.yt(1)分别利用这两个模型,求该地区 2018 年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由19(12 分)设抛物线 的焦点为 ,过 且斜率为 的直线 与 交于 , 两点, 24Cyx: F(0)klCAB|8(1)求 的方程;l(2)求过点 , 且与 的准线相切的圆的方程AB20(12 分)如图,在三棱锥 中, , , 为 的中点PABC24PABCOA
6、C(1)证明: 平面 ;O(2)若点 在棱 上,且二面角 为 ,求 与平面 所成角的正弦值MM30PMPA O CB M21(12 分)已知函数 2()exfa(1)若 ,证明:当 时, ;0()1fx(2)若 在 只有一个零点,求 ()fx,)a二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。22选修 44:坐标系与参数方程 (10 分)在直角坐标系 中,曲线 的参数方程为 ( 为参数),直线 的参数方程为xOyC2cos4inxy, l( 为参数)1cos2inxty, t(1)求 和 的直角坐标方程;Cl(2)若曲线 截直线 所得线段的中点坐标为 ,求 的斜率l (1,2)l23选修 45:不等式选讲 (10 分)设函数 ()|2|fxax(1)当 时,求不等式 的解集;a()0f(2)若 ,求 的取值范围()1fxa