1、 + 5ZE#尹增谦1 管景峰2 张晓宏1 曹春梅1(1 华北电力大学物理教学部,河北保定 071003)(2 河北省保定市环境保护监测站,河北保定 071000)( l :2002-01-07)K 1 介绍蒙特卡罗方法的基本原理及其在计算物理中的应用.1oM 蒙特卡罗方法THE MONTE CARLO METHOD AND ITS APPLICATIONYin Zengqian1 Guan Jingfeng2 Zhang Xiaohong1 Cao Chunmei1(1 Department of Physics, NorthChinaUniversityof ElectricPower,
2、Baoding, Hebei 071003)(2 EnvironmentalDetectingInstituteofBaodingCity, Baoding, Hebei 071000)Abstract Theprincipleof MonteCarlomethodandits applicationareintroduced.Key Words MonteCarlo method1 + 5ZE, “ZE, BB 9 ZE uY9 ZE, k Bs, * + q q X, d9 k, pd9+( (、 q)T5 . “C9 / f ?Z, + 5ZEX0 S? 1T1,2,i mB,L)m U
3、x ., s)x(0,a)Sf V. 7USx,A ,xl H V ? 3M Yq. sHqx l H,LMq:0=arccos xl H ?M, OM qP1 =2arccos xl (1)/ s s,A, B ( s,) uW(x,x+dx) = qdP2 =dxa (2)“,BQg, (x,x+dx) OLM qdP =P1dP2 = 2aarccos xl dx (3)5BQg,LM9 qP =dP =l02aarccosxl dx =2la (4): =2lPa (5)V(5) T Vn, V g k9 : !gNQ, nQLM,5 V qn/NT qP9,V7 p92la Nn (
4、6) * qT q ZE L ,V1 N Bt g k9 T2 , a.V1 g k9 TL HW( Mz)gQ MQ Wolf 1850 0.8 5,000 2,532 3.1596Smith 1855 0.6 3,204 1,218.5 3.1554De Morgan,C 1860 1.0 600 382.5 3.137Fox 1884 0.75 1,030 489 3.1595Lezzerini 1901 0.83 3,408 1,808 3.1415929Reina 1925 0.5419 2,520 859 3.17951 , g k p ZE, k,id9kT,1 P q q l,
5、1v k, L=,4S. V !X, 5“Be q5, 110Qg k, Qg、T M i FMQ H5 9 ,5 H50 ,v139l H. * , V !X, Hq/ M、 8b 0 V# 0 9r, 1Q0ZE p V ? .,C9 / C -, q qZE H +5ZEi L . EZE9 g k, ( s(0,1)W ,i/ g , v d9i p .46 Vol.12 No.3 2002 m2 EZE9 5m2y US“, B VMlUSx LC %,yZ_ YM. ig,i“x i|.S VK0, xS VK0,a. f /, LM Hq x lsin, 0 x a (7)Q,8
6、“ Eg ;?g 3 i x,.x0,a i |,i“x0,a | B qB“,xq f f1(x)=1a ,0 x a H0,x H(8) , q f f2()=1,0 H0, H(9)N, 3 i(x,)VMf1(x)“x,f2()“V. x=a1=2 (10)T,1,2 (0,1) ( s .1 ( z, N/ z E L= kBQg,i/ T M O: cd9T:s(xi,i)= 1,xi lsini H0, HTgNQ, * sN =1N Ni=1s(xi,i) (11)M+ qP9.“ LC ZE Eg k.NZE9 f V2 U.V2 + 5ZE9 gQ 10,000 20,00
7、0 100,000 200,000 3.162233 3.137993 3.141179 3.141354V29 TV , “ EgQ 9v, 9 .71“ E,1v9 , 9 ? LC.V 5 V A, + 5ZEp5 H,y B q , P5N q M “, YV kp td9+T5 .NM ,Bt 5, M、 8bV, 0 V# 0 9r,9 V t qV“ , ,00、s0、 0 V, L= 1 qV,“,V + , gZE9 , Hq/ M、 8b 0 V# 0 9r VQ0ZE p.“C9 / Cf ?Z,9 E qV, LCQ E kid99 T,7 V p5 T.9 vi% 、
8、 P HW =, O = ET. N ,9 0 T, E M0 ,4 vi% 、 91 p,9 Hw9 / ?Z1 .9 =Q WvW, vG V Y01 T M0 E ,S W + 5(MonteCar-lo)T | . 1 E, L M, yW s,N, L9 EZE +5ZE.1 , W 547 Vol.12 No.3 2002 5i“v V, 0W , P + 5ZE9 mW,iY LB B .1 , + 5ZE) q5Z W, 59 9y e W. s9e1 ) 5 m.ss =baf(x)dxYVM 9, V/ Ts =k10g(x)dxg(x)(0,1),x(0,1) H(12)
9、 ps10g(x)dxg pH1ZB wH0 5, m3 U.m3 + 5ZE ps V !X“B g ps10g(x)dxZE:BH1Z i HsYUS wLg(x), L= m3, Zgl o, * ,l o g(x) wL/s q 1 ps10g(x)dx,“| s5B q5,“ VYV EZE + 5ZE p .NZE, 9 s10x2dx,g o 1Q H,s 0.332800, 13.3 + 5ZE5 m+ + 5ZE 5 H,B1“+V:/ qV, 9 HW 1 .B ZE,1 9 s H,r“, Q1 ,9 1 QZ79F.B+, % 5 a.(2) s5HqKYl.(3)e,
10、09 LC + 59 H, b e,LIk.(4) E 0 5 9 ZE ?9T. +5ZE l ,vq.B f 0 5 i.“N, ,“dvl 0 (1 VM1 H,B10 (1P,ZE T48 Vol.12 No.3 2002 i.7v“d ,i5, T .v“d, ZE a, ? zT.yN,X |ZE + 5ZE P, X K, | BrT.“9 / f ?Z, + 5ZE +W9 5, + 5ZEwA| P S?Z?vT. I D1 ,fm6. + 5ZE# 0 5.: S,1980.2 Z.9 E + 5ZE .:,1988.3 B.Eliasson et al.MonteCarl
11、o Simulation of RunawayElectrons in O2/N2 Mixture. Herbsttagung derSPG/SSP.1987, Vol.60 pp.241247.4 .H2/CH4“dEACVD V.v V ,2000.5 f.H2/C2H2“d0 MV.v V ,2001.Te尹增谦, 3, 8 g ,1991 M8W:vi V,C v q,v;p V 3,1V Y; 5#9 5 ST T,X?V = E .( 44:) 5TST# M T8 V TT/M T8 5 -21(CHCl2F) -11(CCl3F) -113(CCl2FCClF2)-60100-40100-40120-10100h、h、Mh、h、5-dY?J?J&01000120013010130029030250、h、( =C) )5M& -A -E147350147300150395147300250650h、 f85K)4001,0004001,1005001,2001,0001,8001,8002,300、y B 、 I D1 r. L 5/ .:,1988.2 S. 5/ G lZ !9. ?/ ,2000,5.49 Vol.12 No.3 2002