1、常用公式表 1、求导法则: ( 1)( u+v) / =u/ +v/ ( 2)( u-v) / =u/ -v/ ( 3)( cu) / =cu/ ( 4)( uv) / =uv/ +u/ v ( 5)2vvuvuvu 2、基本求导公式: ( 1)( c) / =0 ( 2)( xa ) / =ax 1a ( 3)( ax ) / =ax lna ( 4)( ex ) / =ex ( 5)( a x) / = axln1( 6)( lnx) / =x1( 7)( sinx) / =cosx ( 8)( cosx) / =-sinx ( 9)( tanx) / = 2)(cos1x=( secx)
2、 2 ( 10)( cotx) / =- 2)(sin1x=-( cscx) 2 (11)(secx)/ =secx*tanx (12)(cscx)/ =-cscx*cotx (13)(arcsinx)/ = 211x (14)(arccosx)/ =- 211x (15)(arctanx)/ = 211x(16) 21 1c o t xxarc 3、基本积分公式 ( 1) kdx=kx+c ( 2) Cxadxx aa 111 ( 3) cxdxx ln1( 4) Caadxa xx ln ( 5) cedxe xx ( 6) Cxxd x c o ss in ( 7) Cxxdx sinc
3、 o s ( 8) Cxdxxx d x t a nc o s1sec22( 9) cxdxxx d x c o ts in1c s c 22(10) cxdxx a r c s in112 ( 11) cxdxx a rc ta n1 1 2 Cxxxdx t a ns e clns e c1 Cxxx d x c o tc s clnc s c2 Caxadxxa a r c t a n113 22 Caxdxxa a r c s i n14 22 Cax axadxax ln2115 22( 1) baba dttfdxxf )()( ( 2) aa dxxf 0)( ( 3) dxxfdxxf abba ( 4) ba ca bc dxxfdxxfdxxf )()()( 4、积分定理: ( 1) xfdttfxa ( 2) xaxafxbxbfdttfxb xa ( 3)若 F( x)是 f( x)的一个原函数,则 )()()()( aFbFxFdxxfba ba 5、 积分方法 baxxf 1 ;设: tbax 222 xaxf ;设: tax sin 22 axxf ;设: tax sec 22 xaxf ;设: tax tan 3 分部积分法: vduuvudv