收藏 分享(赏)

热力学发展史拾零.ppt

上传人:精品资料 文档编号:11059887 上传时间:2020-02-05 格式:PPT 页数:87 大小:617.50KB
下载 相关 举报
热力学发展史拾零.ppt_第1页
第1页 / 共87页
热力学发展史拾零.ppt_第2页
第2页 / 共87页
热力学发展史拾零.ppt_第3页
第3页 / 共87页
热力学发展史拾零.ppt_第4页
第4页 / 共87页
热力学发展史拾零.ppt_第5页
第5页 / 共87页
点击查看更多>>
资源描述

1、2020/2/5,焦耳的生平,焦耳,J.P.(James Prescott Joule 18181889) 焦耳是英国物理学家。1818年12月24日生于索尔福。他父亲是酿酒厂的厂主。焦耳从小体弱不能上学,在家跟父亲学酿酒,并利用空闲时间自学化学、物理。他很喜欢电学和磁学,对实验特别感兴趣。后来成为英国曼彻斯特的一位酿酒师和业余科学家。焦耳可以说是一位靠自学成才的杰出的科学家。,2020/2/5,焦耳的生平,2020/2/5,焦耳的生平,焦耳最早的工作是电学和磁学方面的研究,后转向对功热转化的实验研究。 1866年由于他在热学、电学和热力学方面的贡献,被授予英国皇家学会柯普莱金质奖章。 187

2、2年1887年焦耳任英国科学促进协会主席。 1889年10月11日焦耳在塞拉逝世。,2020/2/5,焦耳的科学成就,1.焦耳定律的发现 1840年12月,他在英国皇家学会上宣读了关于电流生热的论文,提出电流通过导体产生热量的定律;由于不久.楞次也独立地发现了同样的定律,而被称为焦耳-楞次定律。,2020/2/5,焦耳的科学成就,2.热功当量的测定 焦耳的主要贡献是他钻研并测定了热和机械功之间的当量关系。这方面研究工作的第一篇论文关于电磁的热效应和热的功值,是1843年在英国哲学杂志第23卷第3辑上发表的。此后,他用不同材料进行实验,并不断改进实验设计,结果发现尽管所用的方法、设备、材料各不相

3、同,结果都相差不远;并且随着实验精度的提高,趋近于一定的数值。最后他将多年的实验结果写成论文发表在英国皇家学会哲学学报1850年第140卷上,其中阐明:第一,不论固体或液体,摩擦所产生的热量,总是与所耗的力的大小成比例。第二,要产生使1磅水(在真空中称量,其温度在5060华氏度之间)增加1华氏度的热量,需要耗用772磅重物下降1英尺的机械功。他精益求精,直到1878年还有测量结果的报告。他近40年的研究工作,为热运动与其他运动的相互转换,运动守恒等问题,提供了无可置疑的证据,焦耳因此成为能量守恒定律的发现者之一。,2020/2/5,焦耳的科学成就,3.在热力学方面的成就 1852年焦耳和W.汤

4、姆孙(即开尔文)发现气体自由膨胀时温度下降的现象,被称为焦耳-汤姆孙效应。这效应在低温和气体液化方面有广泛应用。他对蒸汽机的发展作了不少有价值的工作,还第一次计算了有关气体分子的速度。,2020/2/5,焦耳的趣闻轶事,1.精确的测量值在几十年里不作大修正 焦耳是一位主要靠自学成才的科学家,他对物理学做出重要贡献的过程不是一帆风顺的。1843年8月,在考尔克的一次学术报告会上,焦耳作了题为论磁电的热效应和热的机械值的报告。他在报告中提出热量与机械功之间存在着恒定的比例关系,并测得热功当量值为1千卡热量相当于460千克米的机械功。这一结论遭到当时许多物理学家的反对。,2020/2/5,焦耳的趣闻

5、轶事,为了证明这个发现是成功的,焦耳以极大的毅力,采用不同的方法,长时间地反复进行实验。1843年末,焦耳通过摩擦作用测得热功当量是424.9千克米/千卡1千克米=9.8焦耳。1844年通过对压缩空气做功和空气温度升高的关系的实验,测得热功当量是443.8千克米/千卡。尤其在1847年,焦耳精心地设计了一个著名的热功当量测定装置,也就是用下降重物带动叶桨旋转的方法,搅拌水或其他液体产生热量。焦耳用水和鲸油作搅拌液,分别测量,然后取平均值,得到热功当量平均值是428.9千克米/千卡。1849年6月21日,焦耳给英国伦敦皇家学会报告了这个结果。从1849到1878年,焦耳反复作了四百多次实验,所得

6、的热功当量值几乎都是423.9千克米/千卡,这和现在公认值427千克米/千卡相比,只小0.7%。焦耳用惊人的耐心和巧夺天工的技术,在当时的实验条件下,测得的热功当量值能够在几十年时间里不作比较大的修正,这在物理学史上也是空前的。难怪威廉汤姆孙称赞说:“焦耳具有从观察到的极细微的效应中作出重大结论的胆识,具有从实验中逼出精度来的高度技巧,充分得到人们的赏识和钦佩。”,2020/2/5,焦耳的趣闻轶事,2.坚持不懈终将获得公认 1845年在剑桥召开的英国科学协会学术会议上,焦耳又一次作了热功当量的研究报告,宣布热是一种能量形式,各种形式的能量可以互相转化。但是焦耳的观点遭到与会者的否定,英国伦敦皇

7、家学会拒绝发表他的论文。1847年4月,焦耳在曼彻斯特作了一次通俗讲演,充分地阐述了能量守恒原理,但是地方报纸不理睬,在进行了长时间的交涉之后,才有一家报纸勉强发表了这次讲演。同年6月,在英国科学协会的牛津会议上,焦耳再一次提出热功当量的研究报告,宣传自己的新思想。会议主席只准许他作简要的介绍。只是由于威廉汤姆孙在焦耳报告结束后作了即席发言,他的新思想才引起与会者的重视。直到1850年,焦耳的科学结论终于获得了科学界的公认。,2020/2/5,盖-吕萨克的生平,盖-吕萨克 盖-吕萨克(Joseph Louis Gay-Lussac,17781850)法国物理学家、化学家。1778年12月6日生

8、于法国上维埃纳省的圣莱奥纳尔。1800年毕业于巴黎工艺学院。1802年起在该校任实验员。他的老师高度赞赏他的敏捷思维、高超的实验技巧和强烈的事业心,特将自己的实验室让给他进行工作,这对盖-吕萨克的早期研究工作起了很大作用。1809年升任该校化学教授。18081832年兼任巴黎大学物理学教授,18321850年任巴黎国立自然史博物馆化学讲座教授。盖-吕萨克在物理学、化学方面都做出了卓越的贡献,2020/2/5,盖-吕萨克的生平,2020/2/5,盖-吕萨克的生平,盖吕萨克1805年研究空气的成分。在一次实验中他证实,水可以用氧气和氢气按体积 1:2的比例制取。1808年他证明,体积的一定比例关系

9、不仅在参加反应的气体中存在,而且在反应物与生成物之间也存在。1809年12月31日盖吕萨克发表了他发现的气体化合体积定律(盖-吕萨克定律),在化学原子分子学说的发展历史上起了重要作用。他1802年发现了气体热膨胀定律。1813年为碘命名。1815年发现氰,并弄清它作为一个有机基团的性质。1827年提出建造硫酸废气吸收塔,直至1842年才被应用,称为盖-吕萨克塔。,2020/2/5,盖-吕萨克的生平,在化学方面,盖-吕萨克研究范围很广,取得不少成果。1808年发表了今天以他名字命名的盖-吕萨克气体反应体积比定律,这对以后化学发展影响很大。此时他被选人法国研究院。他还发现了硼,还有其他多种贡献。特

10、别值得一提的是他的爱国主义精神。他总是把自己的研究工作和祖国荣誉联系在一起。1813年法国两位化学家在海草灰里发现了一种新元素,但在尚未分离出来时无意地把原料都给了戴维,盖-吕萨克知道后十分激动地说:“不可原谅的错误!空前严重的错误!居然倾其所有,拱手送给了外国人。戴维会发现这种元素,并把研究成果公之于世。这样,发现新元素的光荣就会属于英国,而不属于法国了。”于是他和两位化学家一起立即动手,从头做起,昼夜不停,终于与戴维同时确证了新元素碘,为祖国争得了荣誉。,2020/2/5,开尔文生平简介,开尔文(Lord Kelvin 18241907) 19世纪英国卓越的物理学家。原名W.汤姆孙(Wil

11、liam Thomson),1824年6月26日生于爱尔兰的贝尔法斯特,1907年12月17日在苏格兰的内瑟霍尔逝世。由于装设大西洋海底电缆有功,英国政府于1866年封他为爵士,后又于1892年封他为男爵,称为开尔文男爵,以后他就改名为开尔文。 1846年开尔文被选为格拉斯哥大学自然哲学教授,自然哲学在当时是物理学的别名。开尔文担任教授53年之久,到1899年才退休。1904年他出任格拉斯哥大学校长,直到逝世。,2020/2/5,开尔文生平简介,2020/2/5,开尔文的科学成就,开尔文的科学活动是多方面的。他对物理学的主要贡献在电磁学和热力学方面。那时电磁学刚刚开始发展。逐步应用于工业而出现

12、了电机工程,开尔文在工程应用上作出了重要的贡献。热力学的情况却是先有工业,而后才有理论。从18世纪到19世纪初,在工业方面已经有了蒸汽机的广泛应用,然而到19世纪中叶以后,热力学才发展起来。开尔文是热力学的主要奠基者之一。,2020/2/5,开尔文的科学成就,开尔文在科学上的贡献主要有以下个方面: 1.电磁学方面的成就 开尔文在静电和静磁学的理论方面,在交流电方面,特别是关于莱顿瓶的放电振荡性。静电绝对测量和电磁测量方面,大气电学方面等,都作出了重要的贡献。电像法是开尔文发明的一种很有效的解决电学问题的方法。,2020/2/5,开尔文的科学成就,2.在热力学方面的成就 开尔文在1848年提出、

13、在1854年修改的绝对热力学温标,是现在科学上的标准温标。1954年国际会议确定这一标准温标,恰好在100年之后。开尔文是热力学第二定律的两个主要奠基人之一(另一人是R.克劳修斯)。他关于第二定律的说法是:“不可能从单一热源取热使之完全变为有用的功而不产生其他影响”(1851),是公认的热力学第二定律的标准说法。开尔文从热力学第二定律断言,能量耗散是普遍的趋势。,2020/2/5,开尔文的科学成就,在热力学方面还应该提两件事。一件事是开尔文从理论研究上预言一种新的温差电效应,后来叫做汤姆孙效应,这是当电流在温度不均匀的导体上通过时导体吸收热量的效应。另一件事是开尔文和J.P.焦耳合作的多孔塞实

14、验,研究气体通过多孔塞后温度改变的现象,在理论上是为了研究实际气体与理想气体的差别,在实用上后来成为制造液态空气工业的重要方法(见焦耳-汤姆孙效应)。,2020/2/5,开尔文的科学成就,3.装设大西洋海底电缆 装设大西洋海底电缆是开尔文最出名的一项工作。当时由于电缆太长,信号减弱很严重。1855年开尔文研究电缆中信号传播的情况,得出了信号传播速度减慢与电缆长度平方成正比的规律。1851年开始有第一条海底电缆,装设在英国与法国相隔的海峡中。1856年新成立的大西洋电报公司筹划装设横过大西洋的海底电缆,并委任开尔文负责这项工作。经过两年的努力,几经周折,终于安装成功。除了在工程的设计和制造上花费

15、了很大的力量之外,开尔文的科学研究对此也起了不小的作用。,2020/2/5,开尔文的科学成就,4.对电工仪表的研究 开尔文为了成功地装设海底电缆,用了很大的力量来研究电工仪器。例如他发明的镜式电流计可提高仪器测量的灵敏度。虹吸记录器可自动记录电报信号。开尔文在电工仪器上的主要贡献是建立电磁量的精确单位标准和设计各种精密测量的仪器,包括绝对静电计、开尔文电桥、圈转电流计等。根据他的建议,1861年英国科学协会设立了一个电学标准委员会,为近代电学单位标准奠定了基础。,2020/2/5,开尔文的科学成就,5.估算地球的年龄 开尔文从地面散热的快慢估计出,假如没有其他热的来源的话,地球从液态到达现在状

16、况的时间不能比一亿年长。这个时间比地质学家和生物学家的估计短得多。开尔文与地质学家和生物学家为了地球年龄问题有过长期的争论,地质学家从岩石形成的年代,生物学家从生命发展的历史,都认为开尔文估计的年限太短,但是又无法驳倒他的理论。后来,到1896年发现了放射性物质,出现了热的新来源,开尔文的估计不成立了,这问题才解决。,2020/2/5,鲍林的生平简介,量子化学大师鲍林 鲍林是著名的量子化学家,他在化学的多个领域都有过重大贡献。曾两次荣获诺贝尔奖金(1954年化学奖, 1962年和平奖),有很高的国际声誉。,2020/2/5,鲍林的科学成就,为了解释甲烷的正四面体结构。说明碳原子四个键的等价性,

17、鲍休在1928一1931年,提出了杂化轨道的理论。该理论的根据是电子运动不仅具有粒子性,同时还有波动性。而波又是可以叠加的。所以鲍林认为,碳原子和周围口个氢原子成键时,所使用的轨道不是原来的s轨道或p轨道,而是二者经混杂、叠加而成的“杂化轨道”,这种杂化轨道在能量和方向上的分配是对称均衡的。杂化轨道理论,很好地解释了甲烷的正四面体结构。,2020/2/5,JAMES PRESCOTT JOULE,JAMES PRESCOTT JOULE (1818-1889) English physicist,had the strength of mind to put science ahead of

18、beer.He owned a large brewery but neglected its management to devote himself to scientific research.His name is associated with Joules law,which states that the rate at which heat is dissipated by a resistor is given by I2R.He was the first to carry out precise measurements of the mechanical equival

19、ent of heat;and the firmly established that work can be quantitatively converted heat.,2020/2/5,JOSEPH LOUIS GAY-LUSSAC,JOSEPH LOUIS GAY-LUSSAC (1778-1850) French chemist,was a pioneer in balloon ascensions. In 1804,Gay-Lussac made several balloon ascensions to altitudes as high as 7000 m,where he m

20、ade observations on magnetism,temperature,humidity,and the composition of air.He could not find any variation of compositions with height.In 1809,he pointed out that gases combine in simple proportions by volume;and this is still called Gay-Lussacs work on chlorine brought the scientist into controv

21、ersy with Sir Humphry Davy.,2020/2/5,JOSEPH LOUIS GAY-LUSSAC,Gay-Lussac assumed chlorine to be an oxygen-containing compound,while Davy correctly considered it an element ,a view that Gay-Lussac eventually accepted .He showed that prussic acid contained hydrogen but no oxygen.Lavoisier had insisted

22、that oxygen was the critical constituent of acids,and Gay-Lussac. Gay-Lussac was one of the tubing,all of which had to be imported from German,and the French had an import duty on glass tubing.He instructed his German supplier to seal both ends of each piece of tubing and label the tubes “German air

23、.” The French government had no duty listed for “German air”, and he was able to import his tubing duty free.,2020/2/5,WILLIAM THOMSON,Lord Kelvin,WILLIAM THOMSON,Lord Kelvin (1824-1907)Irish-born British physicist,proposed his absolute scale of temperature,which is independent of the thermometric s

24、ubstance in 1848.In one of his earliest papers dealing with heat conduction of the earth,Thomson showed that about 100 million years ago, the physical condition of the earth must have been quite different from that of today.He did fundamental work in telegraphy , and navigation.For his services in t

25、rans-Atlantic telegraphy,Thomson was raised to the peerage,with the title Baron Kelvin of Larg.There was no heir to the title,and it is now extinct.,2020/2/5,HESS,HESS (1802-1852)俄国化学家,1802年出生于德国。在1836年提出了著名的赫斯定律。赫斯定律是热化学的最基本规律。根据这个定律,热化学公式可以互相加减,从一些反应的反应热可求出另一些反应的反应热。这个定律的发现以及当时所采用的实验方法,为以后热力学第一定律的

26、确立奠定了实验基础。,2020/2/5,LINUS CARL PAULING,LINUS CARL PAULING (born 1901)American chemist,did his earliest work in crystal structure determinations,using X-ray diffraction.The early years of his career coincided with the development of quantum mechanics,and his interest in structural chemistry led him t

27、o a variety of quantum mechanical investigations concerned with the solid and nonsolid states of matter.After the war , his interests turned partly to biochemistry, and Pauling discovered the cause of sickle-cell anemia.,2020/2/5,LINUS CARL PAULING,He received the Nobel Prize in chemistry in 1954 fo

28、r his research into the natrue of the chemical bond and the structure of complex molecules.In the late 1950s and early 1960s,he was one of the most vocal opponents of atomic bomb testing ,and received the Nobel Peace Prize in 1963 for his efforts on behalf of the nuclear ban treaty, thereby becoming

29、 the only person to win two individual Nobel awards.,2020/2/5,KIRCHOFF,GUSTER ROBERT,KIRCHOFF,GUSTER ROBERT(1824-1887)德国物理化学家。1858年发表了著名的基尔霍夫定律。该定律描述了反应的等压热效应和温度之间的关系。根据基尔霍夫公式,可以从一个温度时的反应热求得另一个温度时的反应热。,2020/2/5,The First Law : the concepts,(a) An open system can exchange matter and energy with its s

30、urroundings.(b) A closed system can exchange energy with its surroundings, but it cannot exchange matter. (c) An isolated system can exchange neither energy nor matter with its surroundings.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : the concepts,(a) A diathermic system is one th

31、at allows energy to escape as heat through its boundary if there is a difference in temperature between the system and its surroundings.(b) An adiabatic system is one that does not permit the passage of energy as heat through its boundary even if there is a temperature difference between the system

32、and its surroundings.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : the concepts,(a) When an endothermic process occurs in an adiabatic system, the temperature falls;(b) if the process is exothermic, then the temperature rises.(c) When an endothermic process occurs in a diathermic c

33、ontainer, energy enters as heat from the surroundings, and the system remains at the same temperature;(d) if the process is exothermic, then energy leaves as heat, and the process is isothermal.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : the concepts,When energy is transferred to

34、 the surroundings as heat, the transfer stimulates disordered motion of the atoms in the surroundings. Transfer of energy from the surroundings to the system makes use of disordered motion (thermal motion) in the surroundings.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : the concep

35、ts,When a system does work, it stimulates orderly motion in the surroundings. For instance, the atoms shown here may be part of a weight that is being raised. The ordered motion of the atoms in a falling weight does work on the system.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : t

36、he concepts,It is found that the same quantity of work must be done on an adiabatic system to achieve the same change of state even though different means of achieving that work may be used. This path independence implies the existence of a state function, the internal energy. The change in internal

37、 energy is like the change in altitude when climbing a mountain: its value is independent of path.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : the concepts,When a piston of area A moves out through a distance dz, it sweeps out a volume dV = A dz. The external pressure, pex, is equ

38、ivalent to a weight pressing on the piston, and the force opposing expansion is F = pex A.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : the concepts,The work done by a gas when it expands against a constant external pressure, pex, is equal to the shaded area in this example of an i

39、ndicator diagram.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : the concepts,The work done by a perfect gas when it expands reversibly and isothermally is equal to the area under the isotherm p = nRT/V. The work done during the irreversible expansion against the same final pressure

40、is equal to the rectangular area shown slightly darker. Note that the reversible work is greater than the irreversible work.,2020/2/5,The First Law : the concepts,A constant-volume bomb calorimeter. The bomb is the central vessel, which is massive enough to withstand high pressures. The calorimeter

41、(for which the heat capacity must be known) is the entire assembly shown here. To ensure adiabaticity, the calorimeter is immersed in a water bath with a temperature continuously readjusted to that of the calorimeter at each stage of the combustion.,2020/2/5,The First Law : the concepts,2020/2/5,The

42、 First Law : the concepts,The internal energy of a system increases as the temperature is raised; this graph shows its variation as the system is heated at constant volume. The slope of the graph at any temperature (as shown by the tangents at A and B) is the heat capacity at constant volume at that

43、 temperature. Note that, for the system illustrated, the heat capacity is greater at B than at A.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : the concepts,The internal energy of a system varies with volume and temperature, perhaps as shown here by the surface. The variation of the

44、 internal energy with temperature at one particular constant volume is illustrated by the curve drawn parallel to T. The slope of this curve at any point is the partial derivative (U)/(T)v.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : the concepts,When a system is subjected to cons

45、tant pressure and is free to change its volume, some of the energy supplied as heat may escape back into the surroundings as work. In such a case, the change in internal energy is smaller than the energy supplied as heat.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : the concepts,A

46、constant-pressure flame calorimeter consists of this element immersed in a stirred water bath. Combustion occurs as a known amount of reactant is passed through to fuel the flame, and the rise of temperature is monitored.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : the concepts,Th

47、e slope of a graph of the enthalpy of a system subjected to a constant pressure plotted against temperature is the constant-pressure heat capacity. The slope of the graph may change with temperature, in which case the heat capacity varies with temperature. Thus, the heat capacities at A and B are di

48、fferent. For gases, the slope of the graph of enthalpy versus temperature is steeper than that of the graph of internal energy versus temperature, and Cp,m is larger than CV,m.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : the concepts,To achieve a change of state from one temperatu

49、re and volume to another temperature and volume, we may consider the overall change as composed of two steps. In the first step, the system expands at constant temperature; there is no change in internal energy if the system consists of a perfect gas. In the second step, the temperature of the syste

50、m is increased at constant volume. The overall change in internal energy is the sum of the changes for the two steps.,2020/2/5,The First Law : the concepts,2020/2/5,The First Law : the concepts,The variation of temperature as a perfect gas is expanded reversibly and adiabatically. The curves are labelled with different values of c = CV,m/R. Note that the temperature falls most steeply for gases with low molar heat capacity.,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报