1、2.1 曲线与方程,2.1.1 曲线与方程,复习回顾:,我们研究了直线和圆的方程.1.什么叫轨迹?轨迹与条件之间有什么关系?2. 直线(圆)的方程与方程的直线(圆)又有什么关系?,曲线和方程之间有什么对应关系呢?,(1)、求第一、三象限里两轴间夹角平分线的坐标满足的关系,点的横坐标与纵坐标相等,x=y(或x-y=0),第一、三象限角平分线,得出关系:,(2)以方程x-y=0的解为坐标的点都在 上,曲线,条件,方程,分析特例归纳定义,满足关系:,分析特例归纳定义,(3)、说明过A(2,0)平行于y轴的直线与方程x=2的关系,、直线上的点的坐标都满足方程x=2,、满足方程x=2的点不一定在直线上,
2、结论:过A(2,0)平行于y轴的直线的方程不是x=2,分析特例归纳定义,(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程; 这条曲线叫做方程的曲线.,定义:,1.曲线的方程反映的是图形所满足的数量关系; 方程的曲线反映的是数量关系所表示的图形.,一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:,说明:,2.“曲线上的点的坐标都是这个方程 的解” ,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有的点都符合这个条件而毫无例外.,(纯粹性).
3、,3.“以这个方程的解为坐标的点都在曲线上”,阐明符合条件的所有点都在曲线上而毫无遗漏.,(完备性).,由曲线的方程的定义可知:,如果曲线C的方程是 f(x,y)=0,那么点P0(x0 ,y0)在曲线C 上的 充要条件 是,f(x0, y0)=0,例1 :判断下列命题是否正确,解:(1)不正确,不具备(2)完备性,应为x=3,(2)不正确,不具备(1)纯粹性,应为y=1.(3)正确.(4)不正确,不具备(2)完备性,应为x=0(-3y0).,(1)过点A(3,0)且垂直于x轴的直线的方程为x=3(2)到x轴距离等于1的点组成的直线方程为y=1(3)到两坐标轴的距离之积等于1的点的轨迹方程为xy
4、=1 (4) ABC的顶点A(0,-3),B(1,0),C(-1,0),D为BC中点,则中线AD的方程x=0,例2.证明与两条坐标轴的距离的积是常数k(k0)的点的轨迹方程是xy=k.,第一步,设 M (x0,y0)是曲线C上任一点,证明(x0,y0)是f(x,y)=0的解;,归纳: 证明已知曲线的方程的方法和步骤,第二步,设(x0,y0)是 f(x,y)=0的解,证明点 M (x0,y0)在曲线C上.,例3:方程 (1)xy=0,(2)x2+y2=25(y0)(3) 25-x2=y分别表示什么曲线?,练习1:下述方程表示的图形分别是下图中的哪一个?,练习2:若命题“曲线C上的点的坐标满足方程f(x,y)=0”是正确的,则下列命题中正确的是( )A.方程f(x,y)=0 所表示的曲线是C B.坐标满足 f(x,y)=0 的点都在曲线C上C.方程f(x,y)=0的曲线是曲线C的一部分或是曲线C D.曲线C是方程f(x,y)=0的曲线的一部分或是全部,D,C,练习3:设圆M的方程为 ,直线l的方程为x+y-3=0, 点P的坐标为(2,1),那么( ),A.点P在直线上,但不在圆上 B.点P在圆上,但不在直线上;C.点P既在圆上,也在直线上 D.点P既不在圆上,也不在直线上,练习4:已知方程 的曲线经过点 ,则 m =_, n =_.,