收藏 分享(赏)

电能量数据采集与管理系统设计与实现-定稿.doc

上传人:精品资料 文档编号:11015469 上传时间:2020-01-31 格式:DOC 页数:45 大小:165KB
下载 相关 举报
电能量数据采集与管理系统设计与实现-定稿.doc_第1页
第1页 / 共45页
电能量数据采集与管理系统设计与实现-定稿.doc_第2页
第2页 / 共45页
电能量数据采集与管理系统设计与实现-定稿.doc_第3页
第3页 / 共45页
电能量数据采集与管理系统设计与实现-定稿.doc_第4页
第4页 / 共45页
电能量数据采集与管理系统设计与实现-定稿.doc_第5页
第5页 / 共45页
点击查看更多>>
资源描述

1、 EMBED Word.Picture.8 专业学位(硕士)论文论文题目: 电能量数据采集与管理系统的设计和实现 作 者: 宋 永 生 专 业: 软 件 工 程 研究方向: 软 件 工 程 指导教师: 骆斌教授 刘海涛讲师 二九年 6 月 26 日学 号:GM0732222论文答辩日期:2009 年 6 月 26 日指 导 教 师: (签字)南京大学申请硕士学位论文电能量数据采集与管理系统的设计和实现学生姓名:宋 永 生学科专业:软 件 工 程研究方向:软 件 工 程指导教师:骆斌教授 刘海涛讲师摘 要电能量采集与管理系统,主要是用来 实现对采集终端(变电 站、大用 户、配变终端、电厂等)的各

2、种电能量相关参数及数据的自动采集,并通 过对采集的原始数据 进行统计、分析,根据区域网损、线损以及采集终端的运行状况的 监控和主动上 报的实时事项,找出 电网中的主要电能损耗点,统计分析后的数据最 终呈现给监视电网的值 班人员, 实现对所监控电网的监控,为电力企业的商业化运营提供决策支持。在系统设计时,应充分考虑到不同用 户的需求,采用 软耦合和瘦客 户化的设计思想,系统需要满足从省级电网到县级电网、 发电厂、 变电站、大用户等不同层次的需求;可用于实现输、配电网、用电网电能量的自动 采集、 统计、分析功能;也适用于大中城市中的公用配变监测系统,实现对配变终端的动态监测 。本文正是针对以上需求

3、,深入研究了 电能量采集与管理系 统的设计方案与实现技术, 对系统总体设计、技术要点、网络架构、功能设计等作出了阐述,详细介绍了系统设计目标、设计思想和原则、总体设计方案、组网方式及组成结构、软件模块功能组成、系统实现等内容;并重点阐述了如何实现电能量的采集方式, 给出了采集实现的 详细设计方案;同时系统对电能量各个模块的功能进行了详细设计,并提出了 详细的实现方案。本文系统已应用于鞍钢现场,投运后,系统运行稳定,达到了预期效果,获得用户认可。关键词:电能量;采集与管理系统;TMR;DL/T645ABSTRACTThe Electrical Energy Acquisition and Man

4、agement System is primarily used for the realization of the collection terminal (substation, large users, distribution transformer terminals, power plants, etc.) of a in Anshan Iron and Steel Company scene, the system was stable, had achieved the anticipated effect, obtained the customer approval.Ke

5、yword: Electrical Energy; Acquisition and Management;TMR;DL/T645目录第 1 章 绪论1.1 课题背景1.2 电能量数据采集与管理系统研究现状1.2.1 同类产品1.2.2 发展趋势1.3 本文的工作第 2 章 相关技术概述2.1 通信协议2.2 DL/T 6452.2.1 字节格式2.2.2 帧格式2.3 实现技术2.4 小结第 3 章 电能量数据采集与管理系统概述3.1 设计原则3.2 技术要求3.3 拓扑结构3.4 体系结构3.5 功能框架3.6 小结第 4 章 电能量数据采集与管理系统设计4.1 数据采集的分析与设计4.1.

6、1 电能量数据采集特点4.1.2 电能量数据采集功能要求4.1.3 数据采集的设计4.2 统计计算的分析与设计4.2.1 功能要求4.2.2 分析设计4.3 业务操作的分析与设计4.3.1 电量分析功能设计4.3.2 线损分析功能设计4.3.3 日常业务操作设计4.3.4 图形分析功能设计4.4 系统管理的分析与设计4.4.1 功能需求4.4.2 分析与设计4.5 WEB 报表的分析与设计4.6 参数管理的分析与设计4.7 小结第 5 章 电能量数据采集与管理系统的实现5.1 电能量数据采集的实现5.1.1 通讯参数设计实现5.1.2 规约库设计实现5.1.3 通讯设备库设计实现5.2 业务分

7、析的实现5.2.1 电量分析实现5.2.2 线损分析实现5.2.3 日常业务操作实现5.3.4 图形分析功能实现5.3 系统管理的实现5.4 WEB 报表的实现5.5 参数管理的实现5.6 小结第 6 章 总结6.1 本文总结6.2 今后的工作参 考 文 献致 谢 图表目录图 2.1 传输序列图图 2.2 帧格式图 2.3 控制码格式图 3.1 系统典型拓扑结构图 3.2 体系结构图 3.3 功能框架图表 4.1 采集模块基本功能表图 4.1 采集模块数据流关系图图 4.2 电量自动计算的主流程图图 4.3 旁路时电量计算处理图 4.4 线路基础电量计算流程图图 4.5 线路旁路电量计算流程图

8、图 4.6 线路电量计算流程图图 4.7 对象电量计算的流程图图 4.8 权限管理模块的结构设计图图 4.9 权限管理模块程序流程图图 5.1 规约类库设计图图 5.2 规约基类图 5.3 问答规约类图 5.4 通讯设备类库设计图图 5.5 设备参数设置类图 5.5 通信设备基类图 5.6 串口通信设备类图 5.7 拨号通信设备类图 5.8 电量分析实现界面图 5.9 线损分析实现界面图 5.10 日常业务操作实现界面图 5.11 图形分析实现界面图 5.12 系统管理实现界面图 5.13 报表管理实现界面图 5.14 参数管理实现界面专业名词DSM 电量需求侧管理TMR 电能量计量系统RTU

9、 数据采集远方终端ERTU 电能量数据采集远方终端PT 电压互感器CT 电流互感器SCADA 数据采集和监视系统DMIS 调度管理信息系统MIS 管理信息系统DMS 配网管理系统EMS 能量管理系统第 1 章 绪论1.1 课题背景电力需求侧管理(Power Demand Side Management,简称 DSM) 国家发展和改革委员会,2004是指通过提高终端用电 效率和优化用电方式,在完成同样用电功能的同时减少电量消耗和电力需求,达到节约能源和保 护环境, 实现低成本电力服 务所进行的用电管理活动。 电力需求侧管理发源于美国。1973 年第一次世界石油危机爆 发后,燃料价格 飞涨 ,美国

10、能源界意识到单纯依靠能源供应很难满足不断增长的能源需求, 还应该考虑需求 侧的节约。 电力需求侧管理正是适应这一变化而兴起的新的能源管理方法。 这期间,美国建立了同时将供应方和需求方两种资源,作为一个整体进行综合资 源规划(IRP)的新理念, 对供 电方案和节电方案进行技术筛选和成本效益分析,形成综合规划方案。第二次石油危机爆发后,更多国家开始重视电力需求侧管理的研究和应用,目前已逐 渐扩散到加拿大、欧盟国家、日本、巴西等 30 多个国家和地区。20 世纪 90 年代初,电力需求 侧管理被引入我国。 1996 年 2000 年间,各省( 区、市 )先后开展了多种电力需求侧管理示范项目,取得了一

11、定的 经验 。2002 年以来,随着电力供需紧张, 电力需求侧管理进一步得到了全社会的普遍关注。 电力需求 侧管理在我国进入了一个较快发展的时期,国家有关政府部 门及部分省级政府出台了很多关于 电力需求侧管理的政策,对实施有序用电、提高能效、 缓解电力供需矛盾发挥了积极的作用。电能采集与管理系统是电力需求侧管理的重要组成部分,为电力需求侧管理提供了强有力的技术支持。随着电力法的实施和电力工业的体制改革, 电网的运营和管理正逐步走向商 业化。在市场经济体制下,各电网中发电 、供 电、用电各方形成了以经济条款为纽带的新型运作模式,以传统行政手段为主的经营方式被打破, 经济考核成为电 网运行管理的主

12、要手段。同 时,由于电力生产和使用的特殊性,其价格取决于电力系统运行中的 诸多因素。经济增长与电力需求,是分析一个国家 经济运行状况的两个重要指 标;国际上的一些研究机构,通过分析实际用电量来判断 经济增长状况。近 20 年来,我国 GDP(Gross Domestic Product,国内生 产总值)与电力需求均保持了高增长。随着我国社会主义市场经济 的发展和“ 一户一表”工程的开展,用户用电表计数量增幅较大,这也使得电能表计的抄表工作量加大了。传统的电费 抄收方式是按月人工抄表,存在中间环节多,工作量大,实时 性差,计算差错率高等弊端。由少抄、漏抄和错抄造成的“线损”直接影响了电力部门的经

13、济效益, 造成了国家电力资源的大量流失。电能量数据采集与管理系统的建设是随着电力商业化运营的开展、电厂出现多元化投资主体而开始的;为了提高供电部门的生产效率和效益,提高供电部门的自动化管理水平,实现电表电量数据的采集和管理全过程计算机网络管理系统。同时还应满足用电检查、 电费催交及电压合格率等工作的计算机管理的需要。以达到提高抄表工作的工作效率,减少差错,规范工作,加强对用户的管理。现电力部门大力开发抄表系 统软件,使用户用电管理达到系统化、规范化、自动化、统一化。 电能量数据采集与管理系统是集计算机、数字通信等多 项 高技术于一体的抄表系统肖鲲等,2002 ,具有抄收速度快,计算精度高,抄表

14、同 时性好,可直接与计费计算机联网等突出优点。电能量数据采集与管理系 统的实施应用可以缓解抄表人 员的劳动强度,降低抄表 误差和便于计算线损,是提高电力 营业管理自动化水平的重要技 术手段;它既可用于工业抄表、农业网线损管理,亦可用于居民用 户抄表。电能量数据采集与管理系统是电力市场运营的基础,它直接关系到交易各方的利益,是交易结算的依据。通过现场手工抄表或 远方自动抄表等方式,将电能计量点的电能表读数送到电能计量结算部门进行统计处理,形成 对各有关单位的 电能购销统计数据,通 过相应的处理,计算出各个用电单位的购销电 能量费用,完成 电费的结 算,是电量采集的最终目的。因此,为适应商业化运营

15、的需要,建设一个能自动完成电量考核及 结算功能的电量采集与管理系统是十分必要的。1.2 电能量数据采集与管理系统研究现状1.2.1 同类产品介绍目前国内同类产品包括 DF6100 电能计量计费自动化系统、EAC 计量自动化系统、CASE2000、山大 电能量采集系统 4 种产品。DF6100 电能计量计费自动化系统,为烟台东方电子公司研 发,其主要技 术性能及特点:采用开放的支撑平台技术具有分布式运行管理环境,采用大型商业数据库作为历史数据库,实时数据库采用客户/服务器技 术和 SQL 访问技术;图形界面采用 OpenGL 技术,界面友好;实现系统故障的实时报警功能,采用网 络平台技术; 具有

16、双前置自动切换,进程守护等功能; 有一定的扩充性能;提供分线 、分段、分压分析线损;可以与负控、MIS、 SCADA 系统接口。EAC 计量自动化系统,为广州科立公司研 发,其主要技 术 性能及特点:为开放式系统,允许用户进行二次开发,可以按设 定的计费模型统计计费,采集可以定时、即时抄录站端数据,具有分时行度、分时电量、分时负荷查询功能;电量信息查询 系统平台,具有报表与各类工况监视图形输出,具有线损管理,实时电价系统,需求侧分析功能等。CASE2000,为湖南威胜公司研发,其主要技 术性能及特点:采用 SQL 商用数据库,图形界面友好,具有定时即时抄录 站端数据功能,提供比 较方便的档案管

17、理,提供 WEB 浏览功能。山大电能量采集系统,为山大 积成电子公司研发,其主要技术性能及特点:采用 SQL 商用数据库,具有定时即时抄录 站端数据功能,提供用 户界面和各种 实现数据,提供 WEB 浏览,支持采集双通道,采用双数据库。1.2.2 发展趋势随着计算机领域计算机硬件技术、通信技 术、数据 库技术、Internet 技术的发展,有采用如下新技术的趋势:1 中间件技术所谓中间件,就是位于操作系 统和应用软件之间的一个软 件层,它向各种 应用软件提供服务,使不同的应用进程能在屏蔽平台差异的情况下,通 过 网络相互通信。中间件技术能使系统配置灵活,专注于业务逻辑处 理,也 为跨平台运行奠

18、定基 础。(2)可视化技术随着计算机技术的发展,可视 化技术的应用,可以将 传统的用数字、表格等方式表达的离线信息,转换为通过先进的 图形技术、 显示技术表达的图 形信息,直观易懂,也更人性化。(3)与 SCADA/DMS/EMS 一体化由于电能量采集系统和 SCADA 采用了一些相同的技术,在技术层面上有很多的共性,易于实现一体化。一体化后管理也将有诸多的方便,可以减少维护的工作量和复杂度,减少维护人员。(4)Internet 信息服 务技术基于 TCP/IP 技 术的 B/S 浏览 ,使得 查看系统信息便利化,是当今技术的发展潮流。1.3 本文的工作本文将分章节详细说明电能量数据采集与管理

19、系统的设计方法和实现方案。组织结构如下:第 1 章 绪论部分 介绍了市 场需求及发展趋势,并 对电能量数据采集与管理系统功能进行简单介绍。第 2 章 基础部分 介绍了系统采用通信规约及系统的实现技术。第 3 章 概述部分 说明系统的设计原则、技 术要求、典型拓扑结构、体系结构及功能框架。第 4 章 设计部分,讲述系统特点、功能及处理流程,并提出实现方案。第 5 章 实现部分,讲述了电能量采集的 实现方式,并 给出了系 统主要模块运行效果图。第 6 章 结束语,总结系统特性、达到的目标及今后的工作。第 2 章 相关技术概述2.1 通信协议电能量数据采集与管理系统,是比 较成熟的系统,目前 应用也

20、比 较广泛。多功能电能表,是由测量单元和数据处理单元等组成,除 计量有功、无功 电 能量外,还具有分时、测量需量等两种以上功能,并能显示、存储和输出数据的电能表。数据终端设备是由数据源、数据宿或两者组成的设备。电能量数据采集与管理系 统通过数据 链路层从电能计量表和数据终端设备上收集数据。电能量数据采集与管理系统与电能计量表计通讯采用的规约为 DL/T 645,与电能计量终端通讯采用的规约为 IEC-60870-5-102。系 统目前实现了 这两种规约。IEC-60870-5-102 标准和 DL/T654-2007 标准都是主 从结构的问答式规约,即主站端为启动端,电能计量数据终端设备位于计

21、数站,始终为 从动站,主站 对各终端执行主从 问答方式通讯。下面以 DL/T645-2007 标准规约为例,说明系统与电能计量数据终端设备进行规约通信的方式。2.2 DL/T 645系统采用的与多功能电表通信协议为 DL/T645-2007 标准,该标准时在 DL/T645-1997多功能电能表通信规约修改而来,主要 为统一和规 范多功能电能表与数据终端设备进行数据交换时的物理连接和协议DL/T645,2007。DL/T645-2007 标准采用 RS-485 标准串行电气接口,支持多点连接。DL/T645-2007 标准为主从结构的半双工通信方式,手持 单元或其他数据终 端为主站,多功能 电

22、表为从站,是一种问答式规约。每个多功能 电表均有各自的地址编码。通信链路的建立与解除均由主站发出的信息帧来控制。每帧由帧 起始符、从站地址域、控制码、数据域长度、数据域、帧信息纵向校验码及帧结束符 7 个域组成,每部分由若干字 节组成。支持标准通信速率为600bps、1200bps、2400bps、4800bps、9600bps、19200bps。下面简要介绍一下 DL/T645-2007 通信协议的字节格式、帧格式,更加详细的帧格式说明请参阅DL/T645,2007。2.2.1 字节格式每字节含 8 位二进制码,传输时 加上一个起始位(0)、一个偶校验位和一个停止位(1),共 11 位,如图

23、 2.1 传输序列图所示。 D0 是字节的最低有效位,D7 是字节的最高有效位。先传低位,后传高位。EMBED Visio.Drawing.11 图 2.1 传输序列图2.2.2 帧格式帧是传送信息的基本单元。帧 格式图 2.2 帧格式所示。说明 代码帧起始符 68H地址域 A0A1A2A3A4A5帧起始符 68H控制码 C数据域长度 L数据域 DATA校验码 CS结束符 16H图 2.2 帧格式帧起始符 68H。标识一帧信息的开始,值 68H=01101000B。地址域由 A0A5。地址域由 6 个字节构成,每字 节 2 位 BCD 码,地址长度可达 12 位十进制书,每 块表具有唯一的通信

24、地址,且与物理层信道无关。当使用的地址码长度不足 6 字节时,高位用 “0”补足。控制码 C。格式如图 2.3 控制码格式所示。EMBED Visio.Drawing.11 图 2.3 控制码格式数据域长度 L。L 为数据域的字节数,读数据时 L200,写数据 时 L50,L=0 时表示无数据域。数据域 DATA。数据域包括数据标识、密码、操作者代码、数据、 帧序号等,其结构随控制码的能功能而改变。传输时发送按字节进行加 33H 处理,接收方按字节减 33H 处理。校验码 CS。校验码从第一个帧起始符开始到校验码之前的所有各字节的模 256 的和,即各字节二进制算术和,不计超过 256 的溢出

25、 值。结束符 16H。标识一帧的结束,值 16H=00010110B2.3 实现技术考虑到该应用的需求及现有的技术条件,在 实现上为最大化利用 现有技术资源,通用数据 库访问接口及网络访问中间件采用已有调度 SCADA 系统的实现,与 SCADA 共用统一的网络数据库库平台,实现网络管理、网络通信、数据存储、数据采集跨平台,同时实现数据与调度系统可以共网,实现数据的共享。客户端管理界面的设计采用 Windows 的风格标准控件 进行设计;框架是 MFC 多文档的结构,外观采用树形浏览导航及标签分页栏的方式实现;功能模块采用插件式实现,能够动态加载,灵活配置。报表模块采用 FormulaOne

26、组件实现, FormulaOne 是一种类此与华表和 EXCEL 的表格控件,该组件是采用 JAVA 实现的,具有良好的跨平台特性。通信协议采用 DL/T645-2007 与 IEC-60870-5-102 两种规约,实现与电能量数据终端通信。2.4 小结本章介绍了系统实现的基础知识与实现技术,讲解了系统 采用的两种通信协议标准。系统组成结构为多文档结构,各个功能模 块采用的插件技术实现 ,即插即用灵活配置。第 3 章 电能量数据采集与管理系统概述3.1 设计原则电能量数据采集与管理系统考虑到不同用户的需求,要求具有跨平台,跨数据库及功能变动性的特点,在设计时需要遵循以下 设计原则:遵循开放式

27、设计标准,硬件规 模和软件应用可随实际系统 的需求灵活构建。采用中间件网络平台来实现网络管理和数据库的访问。支持多厂家的计算机软、硬件平台,各种电度表,电能采集装置。支持多种通信方式及通信协议。设计对象化、功能分布化、软件模块化,根据不同的应用对象需求,系统功能可以灵活构造。具有良好的开放性,能与其它系统方便地集成。具有良好的扩充性能。具有友好的人机界面。坚持安全、可靠、先进、稳定的原则,确保系 统的稳定可靠运行,确保计量系统的可靠性、准确性、公正性。3.2 技术要求电能量数据采集与管理系统具有容量、性能、及时性的要求,在设计时必须考虑满足如下要求6:系统容量:厂站数目200,关口采集点数目5

28、000,数据容量原则上只受硬盘容量限制,例如数据库 72G 硬盘空间可以存 储 12000 个采集数据量(包括正/反向有功、无功分时段数据)3 年的 15 分钟密度数据(包括原始数据、派生数据、统计结果数据、报表等)及其索引。数据精度:等于电表抄读数据精度。系统时钟误差: 0.1 s 。主站与厂站端时钟误差 0.5 s。通讯误码率小于 10-4 时可以保 证系统正常通讯。系统可用率:99.99%。系统平均无故障时间(MTBF)20000h。系统运行寿命15 年。用户画面调用时间 2s。主备设备切换时间 15s。负荷率正常情况下:在线服务器 CPU 平均负荷率25%,数据采集装置 CPU 负荷率

29、25% ,用户工作站 CPU 负荷率25% ,网络负荷率10%;局部故障情况下:在线服务器 CPU 平均负荷率45%,数据采集装置 CPU负荷率50% ,用 户工作站 CPU 负荷率50%,网 络负荷率25% ;联机检索数据平均响应时间3s。3.3 拓扑结构EMBED Visio.Drawing.6 图 3.1 系统典型拓扑结构图 3.1 系统典型拓扑结构,主要体 现系统的 C/S 网络模型、双网冗余配置、双服务器热备用、数据透明访问。Client/Server 网络模型。如果每一个应用都和相应的服务器建立一个 链接,客户机和服务器之间的链路会非常之多,最后服务器将不堪重负从而降低系 统性能甚

30、至于使系 统瘫痪。我 们设计的网络模型中,每一台客户机都有一个网络服务程序,由它 负责从服务器字典中 获取服务器逻辑位置的信息并建立链路,而客户机的每一个 应用只和本地的网络服 务程序打交道。从 图中可以看出,每一客户机和服务器之间只有一条数据链路。 这是一个两 级结构的 Client/Server 网络模型。客户机本地网络服务器程序是所有本地客户应用的 Server 端,相对于整个系统它又是系统Server 的 Client 端。两级结构的 Client/Server 网络模型,不但减少了Server 和 Client 之间的网络链路的数量,同时也使网络管理变得容易。双网冗余配置。系统中预先

31、将网 络中的数据信息流分为两种,一种是控制流,一种是数据流,A 网、B 网通过两套网络设备 ,组成两套独立的网络,系统正常运行时 A 网为控制流通道,负责命令、邮件、事项、信息的传输及网络状态的监控;B 网为数据流通道,负责数据的传输处理;在数据传输之前,网络平台判断 该数据流的属性,决定通过那一个网段的端口进行数据的传送,这样在预先的判断中就能 够决定数据的流程方向。控制命令与数据信息的分离,充分体现快慢数据的意义,紧 急需要处理的命令占用 A 网快速通道,一般的数据信息由 B 网慢速通道传输;另外当 B 网网络负荷重的情况下,还可以由 A 网传输一部分数据, 实现 A 网分流数据,均衡负载

32、的作用。冗余配置主要体现在故障时:A 网故障时,B 网自动切换为 命令、数据通道,负责承担网络内所有命令及数据信息传输;相应 B 网故障时,命令及数据信息由 A 网承担。双服务器热备用。主要目的实现 一台服务器故障, 进行无缝 服务器的切换。系统运行时两台或多台服务器有主次之分,只有一台 处于值班状态,另一台则处于备用状态。两台服务器都要进行各自的数据处理,但是只有 值班服务器响应客户机的数据请求。当值班服 务器发生故障后,根据网 络状 态,自动切换到备用服务器上,实现无缝服务器切换。图中数据服 务器及前置采集服务器都采用了 这种双服务器热备用方式。数据透明访问。如果两台服务 器之间的数据是严

33、格一致的,理论上客户机可以登录到任一台服务上和服务器建立数据链路。但是用 户对数据的访问应 是透明的,我 们是指定客户机总登录到值班机,其登录过程可描述如下:客户机从服务器字典里获取服务器逻辑位置信息;根据服务器逻辑位置信息与主服务器建立数据链路;服务器收到链接请求后,判断自己是 值班还是备用。若是 备 用,即拒绝连接。若是值班,在进行身份检查后同意链接;客户机的连接请求被拒绝后马上从服务器字典里取得另一服务器逻辑位置信息,重复第(2)步;和服务器进行数据通信。若发 生通信中断,有可能是服 务器 发生故障,原备机升为值班,客户机应立即去试着和另一服务器相链接;值班服务器收到手动切换命令,它立即

34、把自己置 为备用状 态,同 时切断所有客户机的数据链路;备用服务收到手动切换命令,立即把自己置 为值班状态,等待客户机的链接请求。系统采用 WEB 服务器的方式,向网外提供数据浏览服务。3.4 体系结构EMBED Visio.Drawing.11 图 3.2 体系结构体系结构采用通用数据库访问及网络访问中间件,基于跨硬件、跨操作系统设计,屏蔽不同操作系统访问特性;同时封装数据库访问接口,屏蔽不同数据库访问特性,网 络中间件实现软总线概念,所有应用基于网 络统统管理层进行实现,采用分层、分组件的原则,即插即用,易于程序功能扩展和配置。3.5 功能框架EMBED Visio.Drawing.11

35、图 3.3 功能框架图电能量数据采集与管理系统由系统平台、数据采集模 块、 统计 分析模块、业务分析模块、权限管理模块、Web 浏览/报表模块、参数管理模 块组成,如 图 3.3 功能框架 图。通用平台提供网络管理、网络 通信、数据 库访问服务、实时数据库创建、进程守护、工况监视及主备切换,其他模块都建立在系 统平台的基础上。数据采集模块:主要是完成系统对采集终端(RTU、ERTU 、电表处理器等)的各种电量数据的准确、及时、可靠的采集,通过网络平台将采集的电量数据以邮件的方式传送到数据服务器,进行计算、统计分析,同时将电能表码数据存盘。统计分析模块:主要是完成对电表的数据进行计算, 计算的数

36、据源有两种:一种是通 过实时数据库来计算实时电量数据;另一种通过访问历史数据库来得到数据从而进行计算;权限管理模块:对整个主站系统的权限进行管理, 实现授权 与业务相分离的原则。业务分析模块:主要是完成对已计算数据的查询、浏览、分析,实现数据的可视化。参数管理模块:主要是电网设备参数、 计量设备参数及采集参数的 维护。系统管理模块:完成对系统的整个日志的监控、 节点的监控、权限的设置及系统表的等。Web/报表模块:完成报表的制作,电量数据的网上浏览和各种定制报表的自动发布。3.6 小结本章概述了电能量数据采集与管理系统的设计原则、技 术 要求、拓扑 结构、体系结构、功能框架及采用技 术, 详细

37、说明了整个电能量数据采集与管理系 统的组成模块及各组成模块实现的功能,是电 能量数据采集与管理系统的 总体设计。第 4 章 电能量数据采集与管理系统设计4.1 数据采集的分析与设计4.1.1 电能量数据采集特点电能量数据采集子系统是电能量数据采集与管理系统与电力系统的直接接口,它通过与电能量远方终端、集中器等电能量集中 设备或直接与电能表的通 讯实现对电能量、 电能质量数据、考核数据以及其它信息的采集,并能集成其他数据源的电能数据或其它信息,具有按设定抄收周期实行自动抄收以及按需随机选抄功能,能够可靠、安全地实现信息的采集、传输、存储功能,最大限度地满足实际需要。采集的主要数据包括电能表码数据

38、、瞬 时量数据、失 压断相数据、需量数据等。其中电能表码数据:总、峰、平、尖、谷时段正向有功表 码、反向有功表 码、正向无功表码、反向无功表码,具体情况视采集终端采集指标而定。瞬 时量数据:三相电压 、三相 电流、总功率、总功率因数(总)。失压断相数据:最近一次开始时刻、最近一次结束时刻、累计时间、累计次数等。需量数据:包括总、尖、峰、平、谷时段正向有功需量、反向有功需量、正向无功需量、反向无功需量,具体情况视采集终端采集指标而定。电能量数据采集与管理系统具有自成一体的数据库管理,能够灵活的适应实际工程现场中,各种可能出现的通信网络拓扑结构。电能量数据采集要求接入多种通信规约。因此通 讯规约库

39、设计 采用面向对象的技术, 针对不同的规约实现不同的接口,调 用采用虚拟接口方式,易于 规约 的扩展和继承。电能量数据采集通讯方式也有多种。因此 设计通讯设备库 是,也采用面向 对象的技术,每种设备定义一种对象,抽象出公共接口,调用采用虚拟接口的方式,易于设备的增加、扩充、 继承。电能量数据采集要求数据可靠,根据通道配置的冗余结构情况,能够依据通讯状况、通讯质量自 动进行通道的切换,确保系 统 的可靠性。电能量数据采集按通道、规约 、路由的方式采集数据,并将数据按照 规约解释出的熟数据,并将数据可靠的写入到历史数据库,并确保数据不 丢失。根据现场不同的情况,有需要 电量数据转发的功能,因此 电

40、 能量数据采集模块还要承担将数据转发到其他系统的责任,充分 实现数据共享。4.1.2 电能量数据采集功能要求电能量数据采集子系统,主要 实现电能量数据的收集功能。数据源可分为三类,电能量远方终端、集中器等电能量集中设备 ;电能表计;集成其他数据源的 电能数据。电能量数据采集模块,按照用户需求,其基本功能需求如表 3.1 所示:模块名称 功能类别 功能 描述 特殊需求数据采集 自动抄表 数据采集 双机切换 人工或自动切换主备通道 有可能是多个备用通道通讯报文监视采集任务管理器接收主动上报数据抄表数据即时浏览参数查看 通道参数计量点参数终端与通道对照表状态检测 采集终端状态通道状态电表状态事项处理

41、 采集事项电表故障网络通信 事项、设备 状态命令执行状况远程维护采集终端维护 ERTU 参数维护读抄历史数据电表维护 对钟 需电表支持参数下装 需要采集器支持表 4.1 采集模块基本功能表 实现采集采集功能说明如下:以一定的频率扫描所有通道,根据通道是 实时通道还是非 实时通道, 维持通道状态始终处于打开的状态还是在只有需要的时候才打开的状态。在通道处于打开的状态下对通讯设备进行读写操作。以一定的频率依次扫描已建立连接通道,通 过它进行数据 规约处理。非 实时通道在数据处理结束后,及时通知关闭通道。数据规约处理包括定时自动抄表,即时抄表等。接收业务工作站下发的命令,送到相 应 RTU 的命令缓

42、冲区中,并设置打开通道标志,以便通过通道及时对命令进行处理。通 过下发命令进行远程维护 。4.1.3 数据采集的设计基于以上功能需求,前置通讯处 理系统主要由 3 个模块组 成:前置通讯处理主模块前置机通讯处理主模块,主要 负责与前置系统其他部分的通 讯(下载系统所需的参数,接收发到系统的邮件,把邮件生成命令写到 RTU 对应的命令缓 冲区, 检查数据文件看是否有需要写到数据库中的数据,把需要写向数据 库的数据及时写入 库中)。在内部通过设备层负责对设备的启动/停止/复位等设备操作;轮询各通道并通过通讯规约进行规约解释。规约处理模块规约处理模块功能,主要负责 各种通信规约的处理。根据下发的命令

43、组合成下行报文,对接收到的数据进行规约解释,解 释出的数据写到历史库中去,对于写数据库失败的数据存放到文件中,保证数据不丢失。设备通信处理模块设备通信处理模块,主要负责对 各种底层设备的驱动管理。对于实时通道需要确保通道的实时打开,对于非实时性通道确保在有下行数据 时,能 够及时 打开通道,在上行数据送完后关闭通道。EMBED Visio.Drawing.11 图 4.1 采集模块数据流关系图图 4.1 为数据采集模块的数据流关系图。采集模 块数据流由两部分 组成,一种是数据上行,一种是数据下行。采集模块数据上行方式为:经由计量采集终端将电表数据采集到设备通信处理器中,由通信处理器将规约数据转

44、入规约处理器,解析到前置机数据 缓 冲区,最后 经由数据处理器处理后,将表码数据存储到数据库中。采集模块数据的下行方式为:直接将下行命令写入到前置机数据缓冲区中,然后定时检查缓冲区中是否有命令,通过设备 通信处理器将命令经由计量采集 终端下发到电表。4.2 统计计算的分析与设计此节中主要涉及到电量的计算及统计,运用到电力系统专业 的术语及相关的计算公式,在此给于说明:电能量:简称电量,在电能量采集系 统中,一般利用脉冲 电 能表或多功能电能表的输出脉冲累加变换获取。供入电量:发电厂上网电量临网供入电量购小水电、小电网上网电量转供电量:供临网电量售电量:全局各级电压售电量之和线损率:(供入电量转

45、供电量全局供电量)/供入电量*100% PT:电压互感器,提供恒定的电压源,或用于电压的测量回路。CT:电流互感器,提供恒定的电流源,或用于电流的测量回路。在计算时,假设采集的原码为 RAWCODE,对于变比 PT、CT 的应用,存在公式例如:电压 V,存在 V=PT*RAWCODE 的关系;电流 I,存在 I=CT*RAWCODE 的关系。有功 P、无功 Q,存在 P(Q)=CT*PT*RAWCODE 的关系。4.2.1 功能要求统计分析功能模块是完成对采集的原始表码数据进行计算,从而准确及时的计算出线路用电量或统计对象的平衡分析。统计分析模块一般是一个后台的进程, 应该具备完善的自 动计算

46、,其主要任 务包括:准确及时的计算出线路电量。母线、变压器、变电站、区域电网的平衡分析。计算输入输出量。自动计算日电量、月电量。计算的数据结果,保存到数据库 中。计算量分时段带时标存储。统计分析模块提供自动、手动统计 的功能界面,方便用 户修改表 码后重新计算电量。4.2.2 分析设计4.2.2.1 计算方法分析与设计为了实时计算线路的电量,因此采用 实时数据库, 对于计算 线路的小时电量以内(包括小时电量)的统计周期,如:5 分钟电 量、 10 分钟电量等,从实时数据库当中获取数据(如果不能获得数据则要通过历史数据库来获得);对于统计周期大于小时统计周期的则从历史数据库当中获取数据,这种计算

47、方法的 优点在于:一是真正实现了电 量的实时计算,二是减少了与历史数据库的访问频率,较少 I/O,保护历史数据库。统计对象(母线、变电站、变压器、联络线(馈线)的电量以及平衡分析所用的电量是由线路电量计算出来的。在业务界面当中的统计分析功能也包括重新计算功能,如:重新计算线路电量、重新 计算统计对象电量(有两种计算方法:一种是将已经计算好的线路电量直接累加,二是重新计算线路电量而后再累加(这种方式适合于当线路的表码被修改或是计算错误时使用)都是调用计算服务中的函数来实现。所有的基本计算方法都是(终 止表码- 初始表码)*CT*PT 得来的,比如:计算小时电量是小时末表码减去小时初表码;日电量是

48、日终止表码减去日初始表码;月电量是月结束表码减去月初始表码。计算方式采用手动计算和自动计算两种方式, 这两种计算方式之 间在计算时是互斥进行的。自动计算采用定时触发的方式,不停的 扫描定时统计日志,对满足条件的数据进行统计计算。在计算某一时间段内的电量时,首先是要根据 统计方案来将 给定的时间段划分为若干个周期(以每一个周期为单位),在每一个 统计周期内,找出人工追加的电量、人工修改的电量、以及发生旁路等事件。一般情况下,人工追加电量、人工修改电量是以周期为单位 进行的。旁路事件则完全是随机发生的。但计算电量时要注意几个问题:对于需要计算的线路的电量, 进行自动统计时有可能线路的表 码还没有采

49、集过来,因此 应该尽量避免这样的问题的发生(但这种问题不能杜绝,原因就是有可能通道或是其他原因某些数据采集不成功就可以造成这样的情况),可以考 虑计算时 根据采集方案来定。计算线路电量时要考虑到换表、 换 CT/PT 以及表码满度归零的情况。计算线路电量时要考虑到旁路事件的发生,从而准确的 计 算线路电量。对于某些线路当时没有采集成功,而后系 统自动补抄成功,这时候计算服务也应该重新计算。对于计算出的电量存储到数据库,应该带有属性标记,比如:如果是人工修改电量,则以人工修改的电量为准,而不是以表码计算的电量为准。对于人工修改的电量直接存储到线路电量修正表当中,同时要表明修改的属性。4.2.2.2 统计方案的分析与设计当设计该计算服务模块的时候,要考 虑到本计算服务要支持多方案的 统计。小时方案统计小时方案统计一般是正点到正点的统计方案,一般没有什么变化,因此可以采用固定的格式。日统计方案日统计方案一般是零点到零点的统计方式,但也有同一个系统当中有不同的统计方案,如:有可能省局要求的日统计是晚上 9 点到第二天晚上 9 点,一般的统计周期正好是一天( 24 个小时)因此系 统当中要支持这种

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报