1、高一数学教案设计教案一般包括教学内容、教学目标及教学过程,那么 ,下面是小编给大家整理收集的高一数学教案设计,供大家阅读参考。高一数学教案设计一:集合的概念 教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于” 关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1 课时教 具:多媒体、实物投影仪内容分析:1 、集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言
2、表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,
3、包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1 、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2 、教材中的章头引言;3 、集合论的创始人康托尔(德国数学家) (见附录) ;4 、 “物以类聚” , “人以群分” ;5 、教
4、材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合、1 、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2 、常用数集及记法(1)非负整数集(自然数集):全体非负整数的
5、集合 记作 N,(2)正整数集:非负整数集内排除 0 的集 记作 N*或 N+(3)整数集:全体整数的集合 记作 Z ,(4)有理数集:全体有理数的集合 记作 Q ,(5)实数集:全体实数的集合 记作 R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数 0(2)非负整数集内排除 0 的集 记作 N*或 N+ Q、Z、R 等其它数集内排除 0 的集,也是这样表示,例如,整数集内排除 0的集,表示成 Z*3 、元素对于集合的隶属关系(1)属于:如果 a 是集合 A 的元素,就说 a 属于 A,记作 a A(2)不属于:如果 a 不是集合 A 的元素,就说 a 不属于A,记作4 、集
6、合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5 、集合通常用大写的拉丁字母表示,如A、B、C 、 P、Q元素通常用小写的拉丁字母表示,如a、 b、c、p、q“”的开口方向,不能把 aA 颠倒过来写三、练习题:1 、教材 P5 练习 1、22 、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人 (不确定)(3)1,2 ,2,3 ,4,5、 (有重复)3 、设 a,b 是非零实数,那么 可能取的值组成集合的元素是_-2,
7、0,2_4 、由实数 x,x, x, 所组成的集合,最多含( A )(A)2 个元素 (B )3 个元素 (C)4 个元素 (D)5 个元素5 、设集合 G 中的元素是所有形如 ab (aZ, bZ)的数,求证:(1) 当 xN 时, xG;(2) 若 xG, yG ,则 xyG ,而 不一定属于集合 G证明(1):在 ab (a Z, b Z)中,令 a=xN,b=0,则 x= x 0* = ab G,即 xG证明(2):xG ,yG ,x= ab (aZ, bZ),y= cd (c Z, dZ)x+y=( ab )+( cd )=(a+c)+(b+d)aZ, bZ,cZ, dZ(a+c)
8、Z, (b+d) Zx+y =(a+c)+(b+d) G,又 不一定都是整数, 不一定属于集合 G四、小结:本节课学习了以下内容:1 、集合的有关概念:(集合、元素、属于、不属于)2 、集合元素的性质:确定性,互异性,无序性3 、常用数集的定义及记法高一数学教案设计二:函数的概念 【内容与解析】本节课要学的内容有函数的概念指的是函数的概念及符号 的理解,理解它关键就是能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用。学生已经学过了集合并且初中对函数的概念已经作了介绍,本节课的内容函数的概念就是在此基础上的发展的。由于它还与基本初等函数和函数模型等内容有必要的联系,所以在本学科有
9、着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是函数的概念,函数的三要素,所以解决重点的关键是通过实例领悟构成函数的三个要素;会求一些简单函数的定义域和值域。【教学目标与解析 】1 、教学目标(1)理解函数的概念;(2)了解区间的概念;2 、目标解析(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;【问题诊断分析 】在本节课的教学中,学生可能遇到的问题是函数的概念及符号 的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在
10、通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。【教学过程】问题 1:一枚炮弹发射后,经过 26s 落到地面击中目标. 炮弹的射高为 845m,且炮弹距离地面的高度 h(单位:m )随时间t(单位:s)变化的规律是: h130t-5t2.1.1 这里的变量 t 的变化范围是什么?变量 h 的变化范围是什么?试用集合表示?1.2 高度变量 h 与时间变量 t 之间的对应关系是否为函数?若是,其自变量是什么?设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在 t 的变化范围内任给一
11、个 t,按照给定的对应关系,都有唯一的一个高度 h 与之对应。问题 2:分析教科书中的实例(2),引导学生看图并启发:在 t 的变化 t 按照给定的图象,都有唯一的一个臭氧层空洞面积S 与之相对应。问题 3:要求学生仿照实例(1)、 (2),描述实例(3)中恩格尔系数和时间的关系。设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。问题 4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?4.1 在一个函数中,自变量 x 和函数值 y 的变化范围都是集合,这两个集合分别叫什么名称?4.2 在从集合 A 到集合 B 的一个函数 f:
12、AB 中,集合 A是函数的定义域,集合 B 是函数的值域吗?怎样理解 f(x)=1,xR?4.3 一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?【例题】:例 1 求下列函数的定义域(1) (2)(3) (4)分析:求定义域就是使式子有意义的 x 的取值所构成的集合;定义域一定是集合!例 2 已知函数分析:理解函数 f(x)的意义例 3 下列函数中哪个与函数 相等?例 4 在下列各组函数中 与 是否相等?为什么?分析:(1)两个函数相等,要求定义域和对应关系都一致;(2)用 x 还是用其它字母来表示自变量对函数实质而言没有影响.【课堂目标检 1 测】教科书第 19 页 1、2.【课堂小结】1 、理解函数的定义,函数的三要素,会球简单的函数的定义域和函数值;2 、理解区间是表示数集的一种方法,会把不等式转化为区间。