收藏 分享(赏)

2017届高一数学必修5试题.doc

上传人:精品资料 文档编号:10871709 上传时间:2020-01-16 格式:DOC 页数:6 大小:426KB
下载 相关 举报
2017届高一数学必修5试题.doc_第1页
第1页 / 共6页
2017届高一数学必修5试题.doc_第2页
第2页 / 共6页
2017届高一数学必修5试题.doc_第3页
第3页 / 共6页
2017届高一数学必修5试题.doc_第4页
第4页 / 共6页
2017届高一数学必修5试题.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、12017 届高一下学期期中考试数学一:选择题(每小题 5 分,共 60 分)1 如果函数 sin6fx0的最小正周期为 2,则 的值为( )A1 B2 C4 D82一个三角形的三个内角 成等差数列,则 ( ),AcosBA B C D 1232323函数 的定义域为( )2lg()yxA. B. C. D.1(,)1,(,1)(,)1(,)(,)24设 是等差数列,若 ,则数列 前 10 项和为( )na293,7ana。25 50 100 2005设 ,则下列不等式成立的是( )bA B。 C D。2aab2ablgab6已知等差数列 中, ,则数列 的公差等于( )n31450,3nA1

2、 B4 C5 D67等比数列a n中,a 3,a 9 是方程 3x211x+9=0 的两个根,则 a6=( )A3 B C D以上皆非6138若点 , 均在第一象限,且 ,则 的最小值为( (,)x(2,)yOAB12xyA B。 C。 D。 24809函数 的最小值为( ) 2()(1)xfA B。 C D。432110ABC 的内角 A、B 、C 的对边分别为 a、b、c. 已知 , , ,则52cos3Ab=( )2(A) (B) (C)2 (D)32311. 已知数列 为等比数列, 是它的前 项和,若 ,且 与 2 a7 的等差中nanS231a4项为 ,则 ( )545SA B。 C

3、 D。293133512. 在 C 中,4=,BC 边上的高等于1B,则 sinA= (A)310(B )10(C )5(D )310二:填空题(每小题 5 分,共 20 分)13已知 是等比数列, ,则此数列的公比 _na132,aq14已知不等式 的解集为 ,则 _20x|1xba15ABC 的内角 A,B ,C 的对边分别为 a,b,c,若 , ,a=1,4os5Acs13C则 b=_.16已知 2cosinsi()(0)xx,则 _三:解答题(本大题共 6 小题,满分 70 分)17(本小题 10 分)设等比数列 的前 N 项和为 ,已知 , ,求 和nanS26a130anS18(本

4、小题 12 分)在 ABC 中,AC=6 , 4cos.5BC=,(1)求 AB 的长; (2)求 (6A-)的值. 19(本小题 12 分) 已知函数 2sincosin1,()fxxxR(1)求函数 的最大值;xf(2)若 ,求 的值。4(),(,)5cos320 (本小题 12 分)在 中,ABC53cos,cs.1B(1)求 的值; (2)设 ,求 的面积sinAC21(本小题 12 分) 已知等差数列 na的公差 0d,它的前 n项和为 nS,若 ,52且 成等比数列15,a(1)求数列 n的通项公式 及前 项和 nS; n(2)令 ,求数列 的前 项和 nT41nbSnb22(本小

5、题12分)已知数列a n的前n项和为S n,并且满足a 1=2,na n+1=Sn+n(n+1).(1) 求数列a n的通项公式a n;(2) 设T n为数列 2的前n项和,求T n;4数学参考答案一:选择题(每小题 5 分,共 60 分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C A D B C B C C A D B D二:填空题(每小题 5 分,共 20 分)13. -1 或 2 14 2 15 16 13三:解答题(本大题共 6 小题,满分 80 分)17 (本小题满分 l0 分)【解析】设 的公比为 q,由题设得na3 分1630q解得 或 , 6 分12aq

6、1当 时, ;13,13,(21)nnnS当 时, 10 分ana18 (本小题满分 l2 分)解(1)因为 所以 3 分4cos,0,5B2243sin1cos1(),5B由正弦定理知 ,所以 6 分siniAC6si2.3n5AC(2)在三角形 ABC 中 ,所以 7 分B().B于是 9 分cos(C)cos()cossin,44又 ,故 10 分43,in,5B232510A因为 ,所以 11 分0A7si1cos0因此 12 分23726cos()coin .66100 519 (本小题满分 l2 分)(1) 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。

7、 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。2 分()sin2cosfxx。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。3 分)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。4 分(sicsin44xx。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。5 分2n) 的最大值为 。 。 。 。 。

8、 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。6 分()fx2(2) 42sin2sin445 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。8 分sin()5 , 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。9 分,423(,)42 。 。 。 。 。 。 。 。 。 。 。10 分243cos()1

9、sin1()5 4。 。 。 。12 分cos()sin()si4342521020 (本小题 l2 分)解:(1) , 。 。 。 。 。1 分co,cs.1AB,(,)A 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。2 分22sincs()3A。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。3 分224i1o1()5B 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。

10、 。 。 。 。 。 。 。 。4 分sinisin)CAB。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。5 分cosi。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。6 分1235416()(2)依正弦定理 ,得 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。8

11、分siniBCAsinBCA。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。9 分513 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。11 分sin2ABCSC6。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。

12、 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。12 分13685221 (本小题 l4 分)解:(1)依题意,有 ,即 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。2 分521Sa12150(4)()ad又 0d, 解得 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。3 分 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。4 分1()2

13、1nan。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。5 分S(2) 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。6 分241(1)2nbnn。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。8 分() 12.nnTb。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。9 分1( )352。 。 。

14、 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。10 分)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。12 分21n22 解答 (1) 当 n2 时,因为 nan+1=Sn+n(n+1),。 。 。 。 。 。 。 。 。 。 。1

15、分所以(n-1)a n=Sn-1+(n-1)n,。 。 。 。 。 。 。 。 。 。 。2分两式相减得na n+1-(n-1)an=an+2n,即a n+1-an=2. 。 。 。 。 。 。 。 。 。 。 。3分因为a 1=2,a 2=S1+2=4,所以a 2-a1=2,所以a n=2n(n2). 。 。 。 。 。 。 。 。 。 。 。4分当n=1时也满足上式,所以数列a n的通项公式为a n=2n. 。 。 。 。 。 。 。 。 。 。5分(2) 因为n= = -1n,所以T n=1+ + 23+ -1,。 。 。 。 。 。 。 。 。 。 。7分式两边同时乘以 2得, Tn= + 2+ -1n+ ,。 。 。 。 。 。 。 。 。 。 。8分-得1Tn=2-(n+2)1,。 。 。 。 。 。 。 。 。 。 。10分即T n=4- -12.。 。 。 。 。 。 。 。 。 。 。 12分

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报