收藏 分享(赏)

模电课设 单相桥式整流电容滤波电路.doc

上传人:精品资料 文档编号:10853270 上传时间:2020-01-14 格式:DOC 页数:14 大小:301.90KB
下载 相关 举报
模电课设  单相桥式整流电容滤波电路.doc_第1页
第1页 / 共14页
模电课设  单相桥式整流电容滤波电路.doc_第2页
第2页 / 共14页
模电课设  单相桥式整流电容滤波电路.doc_第3页
第3页 / 共14页
模电课设  单相桥式整流电容滤波电路.doc_第4页
第4页 / 共14页
模电课设  单相桥式整流电容滤波电路.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、0课程设计任务书学 院 信息科学与技术 专 业 电子信息工程学生姓名 班级学号课程设计题目 单相桥式整流电容滤波电路实践教学要求与任务:1) 采用 multisim 仿真软件建立电路模型;2) 对电路进行理论分析、计算;3) 在 multisim 环境下分析仿真结果,给出仿真波形图;4) 撰写课程设计报告。工作计划与进度安排:第 1 天:1. 布置课程设计题目及任务。2. 查找文献、资料,确立设计方案。第 2-3 天:1. 安装 multisim 软件,熟悉 multisim 软件仿真环境。2. 在 multisim 环境下建立电路模型,学会建立元件库。第 4 天:1. 对设计电路进行理论分析

2、、计算。2. 在 multisim 环境下仿真电路功能,修改相应参数,分析结果的变化情况。第 5 天:1. 课程设计结果验收。2. 针对课程设计题目进行答辩。3. 完成课程设计报告。指导教师:2012 年 月 日专业负责人:201 年 月 日学院教学副院长:201 年 月 日目录11 课程设计的目的与作用 .11.1 课程设计的目的 .11.2 课程设计的方法 .12 设计任务、及所用 multisim 软件环境介绍 .12.1 设计任务 12.1.1 单相桥式整流电容滤波电路 .12.1.2 矩形波发生器 .12.1.3 音调发生电路 .12.1.4 微变积分电路 .12.2 Multisi

3、m 软件环境简介 .12.2.1 Multistim 10 简介 .12.2.2 Multistim 10 主页面 .22.2.3 Multistim 10 元器件库 22.2.4 Multistim 10 虚拟仪器 .32.2.5 Multistim 10 分析工具 .33 电路模型的建立 .43.1 单相桥式整流电容滤波电路 .43.2 矩形波发生器 .43.3 音调发生电路 .53.4 微变积分电路 .54 理论分析及计算 .64.1 理论分析 64.1.1 单相桥式整流电容滤波电路 64.1.2 矩形波发生器 64.1.3 音调发生电路 64.1.4 微变积分电路 64.2 工作原理

4、61 课程设计的目的与作用21.1 课程设计的目的(1)了解并掌握 Multisim 软件,并能熟练的使用其进行仿真;(2)加深理解单相桥式整流电容滤波电路的组成及性能;(3)进一步学习整流电路基本参数的测试方法。1.2 课程设计的方法通过自己动手亲自设计和用 Multistim 软件来仿真电路,不仅能使我们队书上说涉及到的程序软件有着更进一步的了解和掌握,而且通过计算机仿真,避免了实际动手操作时机器带来的误差,使我们对上课所学到的知识也有更深刻的了解。2 设计任务、及所用 multisim 软件环境介2.1 设计任务2.1.1 单相桥式整流电容滤波电路设计单相桥式整流电容滤波电路,使输出电压

5、成为比较平滑的直流电压,电路由自己独自设计完成,在实验中通过自己动手调试电路,能够真正掌握实验原理,即静态分析和动态分析,并在试验后总结出心得体会。正确理解不同电容对电路性能的影响,以及如何根据实际要求在电路中求出输出直流电压 Uo 的估算2.1.2 矩形波发生器设计矩形波发生器,将输出电压值稳定在一个值,输出波形为矩形波波形。同时可调节电位器来改变矩形波的占空比。2.1.3 音调发生电路设计音调发生电路,音调放大电路通过调节电位器,是输出电压的幅度变化,实现音量的放大。2.1.4 微变积分电路设计微变积分电路,微变积分电路通过积分运算关系将三角波转换成矩形波。2.2 Multisim 软件环

6、境简介2.2.1 Multistim 10 简介Multistim 是美国 IIT 公司推出的基于 Windows 的电路仿真软件,由于采用交互式的3界面,比较直观,操作方便,具有丰富的元件库和品种繁多的虚拟仪器,以及强大的分析功能等特点,因而得到了广泛的应用。2.2.2 Multistim 10 主页面启动 Multistim 10 后,屏幕上将显示主界面。主界面主要由菜单栏、系统工具栏、设计工具栏、元件工具栏、仪器工具栏、使用中元件列表、仿真开关、状态栏以及电路图编辑窗口等组成。2.2.3 Multistim 10 元器件库Multistim 10 提供了丰富的元器件,供用户构建电路图时使

7、用。在 Multistim 10 的主元器件库中,将各种元器件的模型按不同的种类分别存放若干个分类库中。这些元器件包括现实元件和虚拟元件。从根本上说,仿真软件中的元器件都是虚拟的。这里所谓的现实元件,给出了具体的型号,它们的模型参数根据该型号元件参数的典型值确定。现实元件有相应的封装,可以将现实元件构成的电路图传送到印刷电路板设计软件Uliboard 10 中去。而这里所谓的虚拟元件没有型号,它的模型参数是根据这种元件各种型号参数的典型值,而不是某一种特定型号的参数典型值确定。虚拟元件的某些参数可以由用户根据自己的要求任意设定,如电阻器的阻值,电容器的容值以及三极管 值等,这对于教学实验的仿十

8、分方便。虚拟元件没有相应的封装,因而不能传送到 Uliboard 10中去。另外,Multistim 10 的元器件库还提供一种 3D 虚拟元件,这是 Multistim 以前的版本并没有。这种元件以三维图形的方式显示,比较形象,直观。Multistim 10 还允许用户根据自己的需要创建新的元器件,存放在用户元器件库中。如图 1 所示4图 1 Multistim 10 主界面2.2.4 Multistim 10 虚拟仪器Multistim 10 提供了品种繁多,方便实用的虚拟仪器。取用这些虚拟仪器,只当连接在构建的电路图中,可以将仿真的结果以数字或图形的方式实时显示出来,比较直观。虚拟仪器的

9、连接和操作方式与实验室中的实际仪器相似,比较方便。点击主界面中仪表栏的相应按钮即可方便地取用所需的虚拟仪器。元件工作栏如图 2 所示,虚拟仪表栏如图 3 所示。图 2 元件工具栏图 3 虚拟仪表栏2.2.5 Multistim 10 分析工具分析菜单如图 4 所示。5图 4 分析菜单3 电路模型的建立 3.1 单相桥式整流电容滤波电路在 Multisim 中构建单相桥式整流电容滤波电路,如图 5 所示,其中U1=14.14v,C1=500F,R1=120。图 5 单相桥式整流电容滤波电路3.2 矩形波发生器在 Multisim 中构建矩形波发生电路,如图 6 所示,其中 R1=1K,R2=20

10、K,VEE=-615,VCC=15V,C=20nf图 6 矩形波发生器3.3 音调放大电路在 Multisim 中构建音响放大电路,如图 7 所示,其中R1=R2=R3=47K,R4=470K,C1=250PF,C2=510PF,C3=1F,C4=4.7uf。v1=100mv,v2=120mv图 7 音响放大电路3.4 微分积分电路在 Multisim 中构建微分积分电路,如图 8 所示,其中 R1=10K,C1=330nf7图 8 微变积分电路4 理论分析及计算 4.1 理论分析4.1.1 单相桥式整流电容滤波电路电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。4.1.2 矩形波发生

11、器 矩形波发生器是将输出电压值稳定在一个值,输出波形为矩形波波形。同时可调节电位器来改变矩形波的占空比。4.1.3 音调发生电路 控制调节音响放大输出频率的高低。音调控制器只对低音频或高音频的增益进行提升或衰减,中音频增益保持不变。所以音调控制器的电路由低通滤波器和高通滤波器共同组成。音调放大电路通过调节电位器,是输出电压的幅度变化,实现音量的放大。4.1.4 微变积分电路 微变积分电路通过积分运算关系将三角波转换成矩形波。 4.2 工作原理4.2.1 单相桥式整流电容滤波电路VD2 和 VD4 管截止,电流一路流经负载电阻 RL,另一路对电容 C 充电。当 uCu2,导致VD1 和 VD3

12、管反向偏置而截止,电容通过负载电阻 RL 放电,u C 按指数规律缓慢下降。 当 u2 为负半周幅值变化到恰好大于 uC 时,VD 2 和 VD4 因加正向电压变为导通状态,u 2 再次对 C 充电,u C 上升到 u2 的峰值后又开始下降;下降到一定数值时 VD2 和 VD4 变为截止,8C 对 RL 放电, uC 按指数规律下降;放电到一定数值时 VD1 和 VD3 变为导通,重复上述过程。4.2.2 占空比可调的矩形波发生器:假设 t=0 时电容 C 上的电压 uc=0,而滞回比较器的输出端为高电平,即 uo=+Uz。则集成运放同相输入端的电压为输出电压在电阻 R1,R2 上的分压,此时

13、输出电压+Uz 将通过电阻 R 向电容 C 充电,使电容两端的电压 uc 升高,而此电容的电压接到集成运放的反相输入端,即 u-=u+,当电容上的电压上升到 u-=u+时,滞回比较器的输出端将发生跳变,由高电平跳变为低电平,使 uo=-Uz,输出电压为低电平时,电容 C 将通过 R 放电,使 uc慢慢降低,当电容上电压下降到 u-=u+时,滞回比较器的输出端将再次发生跳变,由低电平跳变为高电平,以后重复上述过程,如此电容反复的进行充电和放电,滞回比较器的输出端反复的在高电平和低电平之间跳变,于是产生了正负交替的矩形波。同时调节电位器 RW 可改变矩形波的占空比。4.2.3 音调放大电路:确定整

14、机电路的级数,再根据各级的功能及技术指标要求分配电压增益,然后分别计算各级电路参数,通常从功放级开始向前级逐级计算。本电路已给定电子混响器的电路模块,需要设计的电路为话筒放大器,混合前置放大器,音调控制器及功率放大器。根据要求,输入信号为 5mV 时输出功率的最大值为 1W,因此电路系统的总电压增益 Av4 由集成功放块决定,取值 100,音调控制级在 f0=1kHZ 时,增益应为 1(0dB) ,但实际电路可能产生衰减,故取 Av3=0.8.话筒放大级和混合级一般采用运算放大器,但会受到增益带宽积的限制,各级增益不宜太大,取 Av1=7.5, Av2=1.运算放大器选用单电源供电的四运放 L

15、M324,其中 Rp3 称为音量控制电位器,其滑壁在最上端时,音响放大器输出最大功率。4.2.4 微变积分电路:使电路的输出电压 uo 与电容两端的电压 uc 成正比,而电路的输入电压 UI 与流过电容的电流 ic 成正比,则 uo 与 ui 之间即可成为积分运算关系。使将三角波转换成矩形波。4.3 理论计算4.3.1 单相桥式整流电容滤波电路: 当 C=500F 时,计算可得:9V97.14.2uU2 (有效值)AVO6.1当 C=50F 时,计算分析可得: V97.14.2uU2 AVO6.1当 C=0F 时,该电路即为单相桥式整流电路,计算可得: VUtdUAVO 97.8.90.2si

16、n220 4.3.2 占空比可调的矩形波发生器:当占空比等于 50%时,则这种波为方波,当 t=0 时,uc=0,uo=+Uz,则 u+=R1*Uz/(R1+R2)。当 u-=uc,电容上的电压上升到 u-=u+时,滞回比较器输出端将发生跳变,使得 uo=-Uz,此时 u+=- R1*Uz/(R1+R2)。周期 T=2RCln(1+2R1/R2).4.3.3 音调放大电路:功放级的电压增益为 Av4=20k/RF得 RF=20k/Av4=20k/100=200。放大倍数 Av2=1+R12/R11=7.8输出电压的表达式为 vo2=-(R22/R21vo1+R22/R23vi2)4.3.4 微

17、变积分电路:电容两端的电压 uc 与流过电容的电流 ic 之间存在着积分关系,即 uc= ,根据虚短,1运放反相输入端的电流为零,则 Ii=ic,故 ui=Ii=icR,根据虚地,uo=-uc,根据上述关系,则输入电压与流过电容的电流成正比,得:Uo=-uc= =115 仿真结果分析 5.1 单相桥式整流电容滤波电路10(1)在选定的电路参数下,利用虚拟示波器观察输出电压 UO的波形,并利用虚拟仪表测得,变压器二次电压 U2=9.998V(有效值),U O(AV)=11.586V。分别见图 9,10。 图 9 变压器二次电压图 10 输出直流电压(2) 保持 U2和 RL不变,改变滤波电容的值

18、分别成为 C=50F 和 C=0,再观察输出直流电压波形并测量 UO(AV)。可以测的,当 C=50F 的时候,U O(AV)=9.061V。如图 11 所示。图 11 当 C=50F 时,U O(AV)的值同样,可以测的,当 C=0F 时,U O(AV)=7.528V。如图 12 所示。11图 12 当 C=0F 时,U O(AV)的值5.2 占空比矩形波发生器(1)在选定的电路参数下,利用虚拟示波器观察输出电压 UO 的波形如图 13图 13 占空比可调的矩形波发生器(2)当调节电位器 RW 时,矩形波的占空比将发生改变,例如:将电位器的滑动端向下移动,则输出端为高电平的时间缩短,输出端为

19、低电平的时间加长。例如图 14图 15 占空比可调的矩形波发生器5.3 音响放大电路(1)在选定的电路参数下,利用虚拟示波器观察输出电压 UO 的波形,如图 1612图 16 音调放大电路(3)当调节电位器阻值时,输出波形的电压幅度将改变,将电位器向左移动,输出电压幅度将变大,向右移动,输出电压幅度将变小。例如图 17图 17 音调放大电路5.4 微变积分电路(1)在选定的电路参数下,利用虚拟示波器观察输出电压 UO 的波形,如图 18图 18 微变积分电路136 设计总结和体会通过自己动手操作 Multisim 软件,使我对此软件有了彻底的了解能够熟练的操作和使用此软件进行仿真,画出电路图等功能。尤其是利用 Multisim10 的参数扫描分析功能,经过了多方的询问和自己进行了很多次的试验,最后终于把图形做了出来,并且通过这次课程设计,加强了我的动手能力,思考和解决问题的能力。在设计过程中,经常会遇到这样那样的情况,就是心里想着这样的接法可以行通,但实际接上电路,总是实现不了,因此耗费了很多时间。平时看课本时,有事问题总是弄不懂,做完课程设计,哪些问题就迎刃而解了,而且还记住了很多东西。7 参考文献1 清华大学电子技术学教研组编,杨素行主编,模拟电子技术基础简明教程,3 版,北京:高等教育出版社,2006

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报