1、数学思想与方法网上作业答案:01 任务_0001一、单项选择题(共 10 道试题,共 100 分。)1. 古埃及数学最辉煌的成就可以说是( )的发现。 A. 进位制的发明B. 四棱锥台体积公式C. 圆面积公式D. 球体积公式2. 欧几里得的几何原本几乎概括了古希腊当时所有理论的( ),成为近代西方数学的主要源泉。 A. 几何B. 代数与数论C. 数论及几何学D. 几何与代数3. 金字塔的四面都正确地指向东南西北,在没有罗盘的四、五千年的古代,方位能如此精确,无疑是使用了( )的方法。 A. 几何测量B. 代数计算C. 占卜D. 天文测量4. 几何原本中的素材并非是欧几里得所独创,大部分材料来自
2、同他一起学习的( )。 A. 爱奥尼亚学派B. 毕达哥拉斯学派C. 亚历山大学派D. 柏拉图学派5. 数学在中国萌芽以后,得到较快的发展,至少在( )已经形成了一些几何与数目概念。 A. 五千年前B. 春秋战国时期C. 六七千年前D. 新石器时代6. 在丢番图时代(约 250)以前的一切代数学都是用( )表示的,甚至在十五世纪以前,西欧的代数学几乎都是用( )表示。 A. 符号,符号B. 文字,文字C. 文字,符号D. 符号,文字7. 古印度人对时间和空间的看法与现代天文学十分相像,他们认为一劫(“劫” 指时间长度)的长度就是( ),这个数字和现代人们计算的宇宙年龄十分接近。 A. 100 亿
3、年B. 10 亿年C. 1 亿年D. 1000 亿年8. 巴比伦人是最早将数学应用于( )的。在现有的泥板中有复利问题及指数方程A. 商业B. 农业C. 运输D. 工程9. 九章算术成书于( ),它包括了算术、代数、几何的绝大部分初等数学知识。 A. 西汉末年B. 汉朝C. 战国时期D. 商朝10. 根据亚里士多德的想法,一个完整的理论体系应该是一种演绎体系的结构,知识都是从( )中演绎出的结论。 A. 最终原理B. 一般原理C. 自然命题D. 初始原理02 任务一、单项选择题(共 10 道试题,共 100 分。)1. 几何原本就是用( )的链子由此及彼的展开全部几何学,它的诞生,标志着几何学
4、已成为一个有着比较严密的理论系统和科学方法的学科。 A. 代数B. 统计C. 分析D. 逻辑2. 九章算术确定了中国古代数学的框架,不仅以( )归纳体系、( )内容、( )方法为特点影响我国数学成就的建立,而且在培养和造就我国数学家方面起到了促进作用。 A. 封闭的、算法化的、演绎化的B. 封闭的、逻辑化的、模型化的C. 开放的、逻辑化的、演绎化的D. 开放的、算法化的、模型化的3. 九章算术确定了中国古代数学的框架,以计算为中心的特点。九章算术亦有其不容忽视的缺点:没有任何( )数学概念的定义,也没有给出任何( )。 A. 代数概念,推导和证明B. 集合概念,推导和证明C. 数学概念,推导和
5、证明D. 几何概念,推导和证明4. 欧几里得的几何原本是一本极具生命力的经典著作,它的著名的平行公设是( )。 A. 过两点能作且只能作一直线B. 线段(有限直线)可以无限地延长C. 同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于 180,则这两条直线经无限延长后在这一侧一定相交D. 以任一点为圆心,任意长为半径,可作一圆5. 几何原本最主要的特色是建立了比较严格的几何体系,在这个体系中有四方面主要内容:( )。 A. 定义、公理、公设、命题B. 定义、公式、公设、命题C. 定义、公理、公设、推论D. 定理、公理、公设、命题6. 九章算术是中国汉族学者在古代第一部数学专著,
6、它的内容十分丰富,全书采用( )的形式,与生产、生活实践密切相关。 A. 推论形式B. 问题形式C. 证明形式D. 叙述形式7. 九章算术是中国汉族学者在古代第一部数学专著,是“算经十书” 中最重要的一种,成书于( )左右。 A. 公元一世纪B. 公元前一世纪C. 300A.C.D. 300B.C.8. 九章算术的叙述方式以( )为主,先给出若干例题,再给出解法;几何原本的叙述方以( )为主,先给出公理,再通过逻辑推出其他命题。 A. 化归,推论B. 归纳,演绎C. 反驳,演绎D. 计算,证明9. 几何原本的理论体系并不是完美无缺的,比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的
7、定义,这样的定义不可能在( )中起什么作用。 A. 计算算法B. 模型方法C. 几何作图D. 逻辑推理10. 九章算术是我国古代的一本数学名著。“算” 是指( ), “术”是指( )。 A. 算法、证明B. 算法、技术C. 算筹、技术D. 算筹、解题方法03 任务_0001一、单项选择题(共 10 道试题,共 100 分。)1. 从 16 世纪开始,自然科学研究的中心问题是运动,科学家们相信对各种运动过程和各种变化着的量之间的依赖关系的研究可以用数学来描述。因此,作为运动着的量的一般性质及各个数量之间存在着相依而变的规律,科学家们引出了数学的一个基本概念( )。 A. 微分B. 积分C. 导数
8、D. 函数2. 初等数学都是以( )为其研究对象,运用这些知识可以有效地描述和解释相对稳定的事物和现象,对于运动变化的事物和现象,它们显然无能为力。 A. 数量和图形B. 不变的数量和固定的图形C. 变化的数字和固定的图形D. 不变的数量和变化的图形3. 就数学发展的历史进程来看,从算术到代数、从常量数学到变量数学、从确定数学到随机数学等是数学思想方法的几次重要突破。代数形成解决了具有复杂( )的问题,变量数学创立刻划了( )的事物与现象,随机数学出现揭示了( )背后所蕴涵的规律。 A. 代数关系、几何问题、统计现象B. 映射关系、对应关系、随机现象C. 数量关系,运动与变化、统计现象D. 数
9、量关系,运动与变化,随机现象4. 代数不但讨论正整数、正分数和零,而且讨论负数、虚数和复数。其特点是用( )来表示各种数 A. 字母符号B. 数字记号C. 图示符号D. 箭头符号5. 第二次数学危机,指发生在十七、十八世纪,围绕微积分诞生初期的基础定义展开的一场争论,这场危机最终完善了微积分的定义和与实数相关的理论系统,同时基本解决了第一次数学危机的关于无穷计算的连续性的问题,并且将微积分的应用推向了所有与数学相关的学科中。而这场争论是指( )。 A. 无穷小量是零B. 无穷小量究竟是不是零C. 无穷大量究竟是很大的数D. 无穷大量究竟是不是有限6. 算术解题方法的基本思想是:首先要围绕所求的
10、数量,收集和整理各种(),并依据问题的条件列出用( )表示所求数量的算式,然后通过四则运算求得算式的结果。 A. 未知数据,未知数据B. 已知数据,未知数据C. 已知数据,未知数据D. 已知数据,已知数据7. 人们在社会实践活动常常遇到两类截然不同的现象,一类是确定性现象;另一类是随机现象。随机现象并不是杂乱无章的现象,当同类现象大量出现时,从总体上却呈现出一种规律性。于是,一种专门适用于分析随机现象的数学工具( )诞生了。 A. 分形数学与模糊数学B. 概率理论与数理统计C. 群论与数论D. 希尔伯特空间与集合论8. 变量数学产生的数学基础应该是( ),标志是( )。 A. 线性代数、几何学
11、B. 概率统计、微积分C. 解析几何、微积分D. 数论初步、几何学9. 第一次数学危机,是数学史上的一次重要事件,发生于大约公元前 400 年左右的古希腊时期,自( )的发现起,到公元前 370 年左右,以( )的定义出现为结束标志。这次危机的出现冲击了一直以来在西方数学界占据主导地位的毕达哥拉斯学派。 A. B. C. D. 10. 代数学形成过程经历了漫长过程:( )。 A. 文字代数,简写代数,图标代数B. 文字代数,简写代数,符号代数C. 文字代数,符号代数,简写代数D. 符号代数,文字代数,简写代数04 任务一、单项选择题(共 10 道试题,共 100 分。)1. 客观世界具有统一性
12、,数学作为描述客观世界的语言必然也具有统一性。因此,数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现。布尔巴基学派在集合论的基础上建立了三个基本结构:( ),然后根据不同的条件,由这三个基本结构交叉产生新的结构。可以说,布尔巴基学派用数学结构显示了数学的统一性。 A. 集合、几何结构和群结构B. 代数结构、几何结构和群结构C. 代数结构、序结构和拓扑结构D. 代数结构、序结构和群结构2. 哥德尔不完备性定理是他在 1931 年提出来的。这一理论使数学基础研究发生了划时代的变化,更是现代逻辑史上很重要的一座里程碑。它证明了任何一个形式系统,只要包括了简单的初等数论描述,而
13、且是( )的,它必定包含某些系统内所允许的方法既不能证明真也不能证伪的命题。 A. 自洽B. 自足C. 自主D. 逻辑3. 公理方法就是从( )出发,按照一定的规定(逻辑规则)定义出其他所有的概念,推导出其他一切命题的一种演绎方法。 A. 初始概念和公理B. 定理和概念C. 公理和推理D. 定理和命题4. 第三次数学危机产生于十九世纪末和二十世纪初,当时正是数学空前兴旺发达的时期。首先是逻辑的( ),促使了数理逻辑这门学科诞生,其中,十九世纪七十年代康托尔创立的( )是产生危机的直接来源。 A. 理论化集合论B. 数学化集合论C. 数学化数论D. 数学化超穷数理论5. 公理化方法的发展大致经历
14、了这样三个阶段:( ),用它们建构起来的理论体系典范分别对应的是几何原本、几何基础和 ZFC 公理系统。 A. 形式公理化阶段、实质公理化阶段和纯形式公理化阶段B. 纯形式公理化阶段、形式公理化阶段和实质公理化阶段C. 实质公理化阶段、纯形式公理化阶段和形式公理化阶段D. 实质公理化阶段、形式公理化阶段和纯形式公理化阶段6. 罗素悖论引发了数学的第三次危机,它的一个通俗解释就是理发师悖论:在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”现在的问题是:如果理发师的胡子长了,他能给自
15、己刮脸吗?( ) A. 能B. 不能C. 无结果7. 为避免数学以后再出现类似问题,数学家对集合论的严格性以及数学中的概念构成法和数学论证方法进行逻辑上、哲学上的思考,其目的是力图为整个数学奠定一个坚实的基础。随着对数学基础的深入研究,在数学界产生了数学基础研究的三大学派:( )。 A. 几何学派、抽象学派、现实学派B. 集合主义、抽象主义、形式主义C. 抽象主义、现实主义、直觉主义D. 逻辑主义、直觉主义、形式主义8. 三段论是演绎推理的主要形式,由( )三部分组成。 A. 小前提、大前提、结论B. 大前提、小前提、结论C. 大前提、小推理、结论D. 前提、推理、结论9. 自然科学研究存在着
16、两种方式:定性研究和定量研究。定性研究揭示研究对象是否具有( ),定量研究揭示研究对象具有某种特征的( )。 A. 某种特征数量状态B. 某种特征实际状态C. 内在关系数量状态D. 内在关系实际状态10. 哥德尔不完全性定理一举粉碎了数学家两千年来的信念。他告诉我们:真与可证是两个概念,( )。某种意义上,悖论的阴影将永远伴随着我们。 A. 可证的一定是真的,但真的不一定可证B. 可证的一定是真的,但真的不一定可证C. 可证的一定是真的,但真的不一定可证D. 可证的一定是真的,但真的不一定可证05 任务一、单项选择题(共 10 道试题,共 100 分。)1. 强抽象就是指通过把些( )加入到某
17、一概念中而形成( )的抽象过程。 A. 新特征新概念B. 特征概念C. 非特征因素新概念D. 新特征原始概念2. 弱抽象又称“概念扩张式抽象 ”,是指由原型中选取某一特征或侧面加以抽象,从而形成比原型更为一般的概念或理论。这时,原型成为新的概念或理论的( )。 A. 特例B. 依据C. 猜测D. 证明3. 例如,“等腰直角三角形等腰三角形 直角三角形三角形”这是一个( )过程。 A. 强抽象B. 弱抽象C. 浅层抽象D. 深层抽象4. 概括是在思维中由认识个别事物的本质属性,发展到认识具有这种本质属性的一切事物,从而形成关于这类事物的普遍概念。由概括得出的新概念是表述概括对象概念的一个( )。
18、 A. 种概念B. 子集概念C. 空集概念D. 属概念5. 例如,“菱形等边四边形 平行四边形四边形” 这是一个( )过程。 A. 强抽象B. 弱抽象C. 浅层抽象D. 深层抽象6. 人们在思维中,抽象过程是通过一系列的( )的思维操作实现的。 A. 比较、区分和舍弃B. 区分、舍弃和收括C. 比较、区分、舍弃和收括D. 比较、区分、增加和收括7. 抽象是对同类事物抽取其( )的本质属性或特征,舍去其非本质的属性或特征的思维过程。 A. 一般B. 特殊C. 异同D. 共同8. 一个概括过程包括等几个主要环节。 A. 比较、区分和扩张B. 区分、扩张和分析C. 比较、概括、扩张和分析D. 比较、
19、区分、扩张和分析9. 概括就是把同类事物的( )联结起来,或把个别事物的某些属性推广到同类事物中去的思维方法。 A. 不同属性B. 共同属性C. 本质属性D. 非本质属性10. 抽象是舍弃事物的一些属性而收括固定出其固有的另一些属性的思维过程,抽象得到的新概念与表述原来的对象的概念之间不一定有( )。 A. 种属关系B. 非种属关系C. 一般关系D. 固有关系06 任务一、单项选择题(共 10 道试题,共 100 分。)1. 猜想就是根据事物的现象,对其本质属性进行( ),或者是根据一类事物中的个别事物的属性对该类事物的共同属性进行( ),这样的思维方法叫做猜想。 A. 论证、论证B. 推测、
20、论证C. 论证、论证D. 推测、推测2. 归纳猜想的思维步骤为:( )。 A. 猜想特例归纳B. 归纳特例猜想C. 特例归纳猜想D. 特例猜想归纳3. 人们运用类比法,根据一类事物所具有的某种属性,得出与其类似的事物也具有这种属性的一种推测性的判断,即猜想,这种思想方法称为( )。 A. 类比猜想B. 类比法C. 猜想法D. 类比证实法4. 反例反驳的理论依据是形式逻辑的( )。 A. 矛盾律B. 同一律C. 统一律D. 悖论5. 数学猜想具有两个明显的特点:( )与( )。 A. 科学性、假想性B. 科学性、推测性C. 预测性、推测性D. 预测性、假想性6. 完全归纳法是根据对某类事物中的(
21、 )的情况分析,进而作出关于该类事物的一般性结论的推理方法。 A. 部分对象B. 特征C. 每一对象D. 原因7. 反驳反例是用( )否定( )的一种思维形式。 A. 一般、特殊B. 一个矛盾、另一个矛盾C. 特殊、特殊D. 特殊、一般8. 所谓不完全归纳法,是根据对某类事物中的( )的分析,作出关于该类事物的一般性结论的推理方法。 A. 全部对象B. 部分对象C. 特征D. 原因9. 归纳法是通过对一些( )情况加以观察、分析,进而导出一个一般性结论的推理方法。 A. 一般的、普遍的B. 个别的、特殊的C. 个别的、强化的D. 一般的、特殊的10. 人们运用归纳法,得出对一类现象的某种一般性
22、认识的一种推测性的判断,即猜想,这种思想方法称为( )。 A. 猜想证实法B. 猜想法C. 归纳猜想法D. 归纳法07 任务一、单项选择题(共 10 道试题,共 100 分。)1. 三段论:“偶数能被 2 整除,是偶数,所以能被 2 整除”。 A. “是偶数”是小前提B. “是偶数”是结论C. “能被 2 整除”是小前提D. “能被 2 整除”是大前提2. 三段论:“因为 3258 的各位数字之和能被 3 整除,所以 3258 能被 3 整除” 。 A. “3258 能被 3 整除”是小前提B. “3258 能被 3 整除”是大前提C. “3258 的各位数字之和能被 3 整除”是大前提D.
23、“各位数字之和能被 3 整除的数都能被 3 整除”是省略的大前提3. 在化归过程中应遵循以下几个原则:( )。 A. 一般化原则、熟悉化原则、和谐化原则B. 简单化原则、归一化原则、和谐化原则C. 简单化原则、熟悉化原则、和谐化原则D. 简单化原则、熟悉化原则、统一化原则4. 数学公理发展有三个阶段:欧氏空间、各种几何空间、( )。 A. 具体空间B. 三维空间C. 一般意义上的空间D. 二维空间5. 演绎推理是以一个( )一般性判断(或再加上一个特殊的判断)为前提,推出一个作为结论的判断的推理形式。 A. 个别的或特殊的B. 一般的或特殊的C. 个别的或普遍的D. 一般的或普遍的6. 化归方
24、法是指数学家们把待解决的问题,通过某种转化过程,归结到一类( )的问题中,最终获得原问题的解答的一种手段和方法。A. 已经能解决或者比较容易解决B. 可以解决或比较容易解决C. 具有特定因素D. 具有普遍特征7. 古希腊欧几里得的几何原本是人们所建立的第一个公理体系,由于它具有特定的研究对象,其公理以人们的直观经验为基础反映为认为公理是自明的,所以称为( )的公理体系。 A. 抽象B. 形式化C. 具体D. 特殊化8. 演绎推理的根本特点是( )。 A. 前提为真,结论为假B. 前提为假,结论必真C. 前提为真,结论必真D. 前提为真,结论可能是真9. 化归方法包括三个要素:( )。 A. 化
25、归目标、化归策略和化归途径B. 化归对象、化归目标和化归原则C. 化归对象、化归策略和化归原则D. 化归对象、化归目标和化归途径10. 化归的途径:( )。 A. 分解、组合、变形B. 分解、组合、恒等变形C. 分解、归纳、恒等变形D. 分解、归纳、变形08 任务一、单项选择题(共 10 道试题,共 100 分。)1. 在古代的游戏与赌博活动中就有( )的雏形,但是作为一门学科则产生于 17 世纪中期前后,它的起源与一个所谓的点数问题有关。A. 概率思想B. 统计方法C. 组合方法D. 分类思想2. 算法具有下列特点:( )、( )、( )。 A. 有限性、确定性、有效性B. 无限性、确定性、
26、有效性C. 有限性、确定性、有限性D. 无限性、确定性、有限性3. 所谓计算是指根据已知数量通过( )求得未知数。计算是一种重要的数学方法,任何一门科学所采用的定量分析都离不开计算。 A. 数学试验B. 数学推论C. 数学方法D. 数学证明4. 算术与代数的解题方法基本思想的区别:算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是( ),而代数方法的关键之处是( )。 A. 计算、等式B. 列算法、列步骤C. 列算式、列方程D. 列算式、列方法5. 算法大致可以分为( )和( )两大类。 A. 单项式算法、指数型算法B. 多项式算法、指数型算法C. 多项式算法
27、、对数型算法D. 单项式算法、对数型算法6. 学生理解或掌握数学思想方法的过程有如下三个主要阶段( )、( )、( )。 A. 潜意识阶段、明朗化阶段、了解阶段B. 了解阶段、理解阶段、深刻理解阶段C. 潜意识阶段、理解阶段、深刻理解阶段D. 潜意识阶段、明朗化阶段、深刻理解阶段7. 代数解题方法的基本思想是,首先依据问题的条件组成内含( )的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。 A. 字母B. 数据C. 已知数和未知数D. 数据和符号8. 计算工具的发展:经历了( );手摇计算机、对数计算尺等机械式计算工具;电动式计算机;机电式计算机;。集成电路计算机、大
28、规模集成电路计算机几个主要阶段。 A. 算盘B. 古代的计算工具C. 尺规D. 绳子9. 算法是由一组( )组成的一个过程。一个算法实质上就是解决一类问题的一个处方。 A. 合理公式B. 有限规则C. 有限数据D. 合理推论10. 在计算机时代,( )已成为与理论方法、实验方法并列的第三种科学方法。 A. 计算方法B. 逻辑推论C. 数据分析D. 虚拟试验09 任务一、单项选择题(共 10 道试题,共 100 分。)1. 数学建模的基本步骤:弄清实际问题、( )、建模、求解、检验。 A. 化简问题B. 寻找条件C. 建立对应关系D. 深化问题2. 数学学科的新发展分形几何,其分形的思想就是将某
29、一对象的细微部分放大后,其( )。 A. 结构更加明朗B. 结构与原先一样C. 结构更加模糊D. 结构与原先不同3. 根据学生掌握数学思想方法的过程有潜意识阶段、明朗化阶段和深刻理解阶段等三个阶段,可相应地将小学数学思想方法教学设计成( )、( )、( )三个阶段。 A. 多次孕育、初步理解、简单应用B. 思考、求解、应用C. 多次分析、初步理解、简单应用D. 多次分析、简化求解、深化应用4. 英国的牛顿和德国的莱布尼兹分别以( )为背景用无穷小量方法建立了微积分。 A. 数学与几何学B. 物理和坐标法C. 数学和解析几何D. 物理学和几何学5. 数学建模是指根据具体问题,在一定假设下使( )
30、,建立起适合该问题的数学模型,求出模型的解,并对它进行检验的全过程。 A. 问题化简B. 条件明朗C. 问题归类D. 条件简化6. 鸽笼原理可叙述为:若 n+1 只鸽子飞进 n 个笼子里,则至少有一个笼子里至少飞进( )只鸽子。 A. 3B. 2C. 4D. 17. 已知某物体在运动过程中,其路程函数 S(t)是二次函数,当时间 t=0、1、2 时,S(t) 的值分别是 0、3、8 。求路程函数。 A. B. C. D. 8. 数学模型具有(抽象性)、(准确性)、( )、( )特性。 A. 公理性、归纳性B. 简单化、虚拟化C. 演绎性、预测性D. 演绎性、模糊性9. 数学模型可以分为三类:(
31、1)概念型数学模型;(2)( );(3)结构型数学模型。 A. 实验型数学模型B. 推理型数学模型C. 逻辑型数学模型D. 方法型数学模型10. 在建立数学模型的过程中,( )这一环节是很重要的。 A. 数学猜想B. 数学抽象C. 数学证明D. 数学模拟10 任务一、单项选择题(共 10 道试题,共 100 分。)1. 数学分类有现象分类和本质分类的区别。所谓现象分类,是指仅仅根据数学对象的( )进行分类。 A. 特征B. 表象C. 内因D. 外部特征或外部联系2. 数学教育效益,是指通过一定时间的教学后,学生在数学学习方面能获得的发展和进步。数学教育效益既包括学生获取( )的效益,也包括学生
32、掌握( )以及提高学习能力的效益。 A. 人文知识、哲学思考方法B. 数学知识、数学思想方法C. 数学知识、数学实验步骤D. 数学文化、数学方法3. 一个科学的分类标准必须能够将需要分类的数学对象,进行( )、( )的划分。 A. 不重复、无遗漏B. 不复制、无遗漏C. 不重复、无标准D. 不复制、无标准4. 所谓数形结合方法是指在研究数学问题时,( )、( )、数形结合考虑问题的一种思想方法。 A. 由数思数、见形思形B. 由数思形、见形思形C. 由数思数、见形思数D. 由数思形、见形思数5. 菱形概念的抽象过程就是把一个新的特征:( )加入到平行四边形概念中去,使平行四边形概念得到了强化。
33、 A. 组邻边相等B. 钝角相等C. 边相等D. 直角6. 所谓特殊化是指在研究问题时,从对象的一个给定集合出发,进而考虑某个包含于该集合的( )的思想方法。 A. 平行子集B. 空集C. 较小集合D. 较大集合7. 所谓本质分类,即根据事物的( )进行分类。 A. 本质特征或内部联系B. 特征C. 性质D. 内因8. 数学思想方法,是指现实世界的( )反映到人们的意识之中,经过( )而产生的结果。数学思想方法是对数学事实和理论经过概括后产生的本质认识。 A. 空间形式和数量关系、讨论活动B. 空间形式和数量关系、思维活动C. 空间形式和逻辑关系、思维活动D. 空间形式和数量关系、辩证活动9.
34、 匀速直线运动的数学模型是( )。 A. 一次函数B. 二次函数C. 对数函数D. 指数函数10. 特殊化的作用在于,当研究的对象比较复杂时,通过研究对象的特殊情况,能使我们对研究对象有个初步了,且它的作用还在于,事物的( )存在于( )之中。 A. 个性、共性B. 共性、个性C. 性质、个性D. 共性、性质11 任务九年义务教育改革的核心是实施素质教育,数学作为一门基础自然学科,如何实施素质教育这正是当前广大数学教师非常关注的新课题。实施素质教育是我国社会主义现代化建设和迎接国际竞争的迫切需要。我们要在 21 世纪激烈的国际竞争中处于战略主动地位,就必须优先发展教育,必须实施素质教育,唯有如
35、此才能实现发展教育的根本任务,提高全民整体索质,从而实现社会的快速发展。素质教育关系着一个国家和民族的未来。小学是义务教育的奠基工程,而小学数学则是基础教育的一门重要学科。如何在小学数学教学中全面贯彻落实素质教育,发挥整体育人功能,这是每位教育工作者都应认真思考的问题。本文就小学数学素质教育谈几点认识。一、学习素质理论,统一思想认识由于我国的基础教育在“应试教育”的轨道上运行多年,人们在思想观念、政策导向、管理体制乃至教育的内容与方法等诸多方面,都形成了一整套固定的模式,因此,要实现从应试教育向素质教育的转轨,决非轻而易举的事。随着社会的进步和发展,以及教育体制持续不断的改进,大家认识到素质教
36、育是一种旨在谋求学生身心发展的教育,是一种承认差异,重视个性的教育,是确认学生主体,从学生个体实际出发的教育,是一种根据社会需要,给学生的素质发展以价值导向与限定的教育,同时又是一种重知识,又不唯知识,以提高民族素质为最终目的的教育。二、素质教育是数学教学改革的主旋律围绕素质教育的实施这一主题,数学教学改革应重视如下几个方面:1重视非智力因素,培养学生的个性品质。一般来说,非智力因素可以转化学习动机,成为学生学习的内驱力;还可以对学生的学习起到调节、强化作用。智力和非智力因素是学生统一的心理活动过程和不同方面,认知过程是这两方面综合作用的结果。我们着眼于学生的素质培养,不仅能使非智力因素对智能
37、发展起到调节、促进作用,更重要的把促进学生非智力因素的发展本身看成是数学教学的一项重要目标,发展学生的个性品质。2重视学法指导,培养学习能力。注重学法指导是现代教学发展趋势之一。学法即学习方法,是学生为了完成学习任务,在学习过程中所采取的学习程序、学习途径、学习手段和学习技能等等。在当今社会,科学技术的发展日新月异,单靠在学校里学到的知识,远远不能适应社会的需要,许多东西靠自己去学习,这就必须具备一定的学习能力。作为数学教师的任务不单是教数学,更重要的是指导学生去学数学。正如著名教育家陶行知先生说的:“教师的责任不在教,而在教学生学。 ”3重视过程教学,发展学生思维。传统教学的弊端之一,就是重
38、结论,轻过程,从而使学生的思维能力得不到提高。因此,改革数学教学,其基点应放在引导学生通过自己的思维活动,掌握学习方法上。要做到这一点,教师就必须重视过程教学,发展学生的思维能力。重视过程教学,应注意做到:概念的教学,重在形成过程;公式、法则的教学,重在推导过程;四则运算的教学,重在审题过程;应用题的教学,重在分析过程。4重视因材施教,让每一个学生的数学素质都得到发展。真正的素质教育不仅要做到因材施教,还要做到因时施教。这就要求在教学组织中把分班教学、分组教学与个别教学结合起来;要求在教学过程中,贯彻个别对待的原则,讲求一把钥匙开一把锁。实施因材施教的方法,目的是为了调动每一个学生的学习积极性
39、、主动性,最大限度发展学生的个性、特长,以他的长处促使改变他的短处,让每一个学生的数学素质都得到全面、和谐、充分的发展。目前愉快教育、成功教育、分层教学等教改试验,以各自的方式对素质教育的实施进行了有益的探索,这几种教改试验,都注意了面向全体、因材施教的原则。5落实活动课程,发展数学能力。课程的整体设计是培养人的蓝图。我国九年义务教育课程方案中,把课程分为学科课程和活动课程,并强调两者相辅相成,有利于在全面提高学生素质中发挥其整体功能。小学数学活动课程,有自身的特点,形式多样,内容丰富,以培养兴趣为灵魂,以发展技能为目的。因此,在教学活动中要注意发挥学生的主动性、独立性和创造性,尽可能地传授一
40、些知识,拓宽知识领域,培养兴趣爱好,发展学生的数学才能。三、重视学科课程,做好发展文章 学科课程是整个教学过程中的主渠道,当然成为全面提高学生素质的主战场,在这个主战场上怎样做好提高学生素质这篇大文章呢?我们认为应做到三个结合。1教书与育人相结合我们要求教师通过数学在生活、生产、科技方面的广泛应用来激发学生学习的兴趣和进行学习目的教育;通过组织参观访问、主题班队会、请校外辅导员作报告等活动开阔学生的眼界;通过选择富有教育意义的插图,有说服力的数据和统计材料以及祖国两个文明建设的成果的介绍,增强学生民族自豪感和自信心;结合学科教学有目的、有意识地培养学生认真、严格、刻苦的学习态度,独立思考、克服
41、困难的精神,计算仔细、书写工整、自觉检验的学习习惯。2传授知识与培养能力相结合(1)重视表象在知识形成过程中的作用。小学生思维的基础是形象的与动作相联系的有关表象。因而我们在教学中要尽可能地利用一些物质化的材料作为思维的中介物,让学生看看、拼拼、摆摆、摸摸,从而将抽象的概念、逻辑关系等通过自身感受呈现出来,达到内化成智力活动的目的。(2)重视思维方法的指导。小学数学教学大纲指出:要培养学生具有初步的逻辑思维能力。四、如何实施素质教育实施素质教育的策略就是通过科学的教育途径,充分挖掘、发挥人的天赋条件,提高人的各种素质水平,使受教育者得到全面、充分、和谐发展的教育,以面向全体学生,全面提高学生基
42、本素质为宗旨,注重于培养受教育者的态度和能力。我结合自身多年的教学经验,从以下几个方面对这一问题进行探讨。1以学生为教学主体,引导学生参与教学过程。著名数学家陶行知先生曾说:“教师的责任不在教,而在教学生学” 。在这几年的教学生涯中,通过理论学习和实践操作,我深刻地感受到教学的成败应以学生为主、教师为辅。学生是教学过程的主体,学习是学生内部的活动,教师在该过程中起着组织、引导的作用。在教学中我们不提倡“灌输式”教育,而应该注重帅生互动,以学生为主体,引导学生动起来并主动参与到课堂教学过程中,从而激发其学习情感、提高学习兴趣。2注重自主探究,让学生体验如何再创造。荷兰数学家弗赖登塔尔说过:“学习
43、数学的唯一正确说法是实行再创造。 ”也就是说教师的任务是引导和帮助学生去进行这种再创造工作,而不是把现成的知识灌输给学生。在日常的学习过程中教师要引导学生主动参与学习过程,在参与过程中通过思考体验来锻炼思维能力,在思考中创造、培养、发展创新思维和实践能力。3联系生活。教师要创造条件,重视从学生的生活经验和已有知识出发学习和理解数学,要善于引导学生把所学的数学知识和方法应用于生活实际中,使学生既加深对知识的理解,体验到生活中处处有数学,体验到学数学的价值所在。教师应创造一个愉悦的学习氛围以减少学生对学习数学的畏惧感、枯燥感,从而激起学生强烈的求知欲望。4加强学习方法的指导。学习方法的指导不能仅仅
44、停留在给学生介绍几种学习方法的理论上,而应该站在实施素质教育的高度,认真开展、落到实处。教师还必须传授学生一些基本的学习方法,比如:(1)教学生如何预习。只有学会如何预习,做好准备工作,才能在学习过程中有目的的学习,有的放矢。(2)教学生如何听课。只有认真听课,才能在很短的课堂教学中提高学习效率,掌握学习方法,学会解题技巧。(3)教学生如何做作业。作业是学生学习情况的直接反应,通过作业能一目了然的看出学生对知识的掌握情况。总之,在小学实施素质教育是一项长期、复杂而艰巨的系统性工程,既是可行的,又是必要的。全面实施素质教育,教师要不断深化课堂教学改革,从观念上、意识上树立起提高学生素质的紧迫感,
45、着重培养学生的学习态度和学习能力,从而提高学生的整体素质。与此同时,我们必须通过全社会、各方面的共同努力,树立全面的人才观和质量观,深入、彻底、细致地进行教育改革,使素质教育有良好的舆论环境和物质基础,素质教育才能在小学真正实施。任务十二分析:(1)根据题意可知,本题有两个未知数:平均每分钟一道正门和一道侧门各通过多少名学生等量关系有两个:当同时开启一道正门和两道侧门时,2min 内可以通过 560 名学生当同时开启一道正门和一道侧门时, 4min 内可以通过 800 名学生根据以上条件可以列出方程组求解;(2)根据(1)的数据,可以求出拥挤时 5min 四道门可通过的学生人数,教学大楼最多的
46、学生人数,还可以求出全大楼学生通过这 4 道门所有的时间,再比较解答:解:(1)设平均每分钟一道正门可通过 x 名学生,一道侧门可以通过 y 名学生则,解得答:平均每分钟一道正门可通过 120 名学生,一道侧门可以通过 80 名学生;(2)解法一:这栋楼最多有学生 4845=1440(名) ,拥挤时 5min 四道门可通过 52(120+80 )(1-20% )=1600(名) ,1600 1440建造的 4 道门符合安全规定解法二:还可以求出紧急情况下全大楼学生通过这 4 道门所用时间:=4.5min4.55,因此符合安全规定点评:解题关键是根据题意找出合适的等量关系,列出方程组,再求解与本题相关的练习册:长江作业本同步练习册八年级数学上册人教版 小学同步测控优化设计六年级数学上册人教版 长江作业本同步练习册九年级数学上册人教版 初中同步测控优化设计七年级数学上册人教版 同步导学案课时练八年级数学上册人教版