1、AOI 原理的介绍AOI 检测分为两部分:光学部分和图像处理部分。通过光学部分获得需要检测的图像;通过图像处理部分来分析、处理和判断。图像处理部分需要很强的软件支持,因为各种缺陷需要不同的计算方法用电脑进行计算和判断。有的 AOI 软件有几十种计算方法, 例如黑白、求黑占白的比例、彩色、合成、求平均、求和、求差、求平面、求边角等等。 1.灯光变化的智能控制 人认识物体是通过光线反射回来的量进行判断,反射量多为亮,反射量少为暗。AOI 与人判断原理相同。 AOI 通过人工光源 LED 灯光代替自然光,光学透镜和 CCD 代替人眼,把从光源反射回来的量与已经编好程的标准进行比较、分析和判断。 对
2、AOI 来说,灯光是认识影象的关键因素,但光源受环境温度、AOI 设备内部温度上升等因素影响,不能维持不变的光源,因此需要通过“ 自动跟踪” 灯光“透过率” 对灯光变化进行智能控制。 2.焊点检测原理 (举例) AOI 是 X、Y 平面(2D)检测,而焊点是立体的因此需要 3D 检测焊点高度(Z)。3D 检测的方法有: (1)激光这种方法最有效、最经济,但是需要对每个焊点进行扫描,扫描花费时间比较长,无法实现在线检测。 (2)最流行的是采用顶部灯光和底部(水平) 灯光两种灯光照射 用顶部灯光照射焊点和 Chip 元件时,元件部分灯光反射到 camera,而焊点部分光线反射出去。即用顶部灯光可以
3、得到元件部分的影象。与此相反,用底部(水平)灯光照射时,元件部分灯光反射出去,焊点部分光线反射到 career。即用底部灯光可以得到焊点部分的影象。 同一个元件,照射灯光的角度不同,camera 认识的影象就不同。如果垂直灯光和水平灯光得到的两种图像的函数关系是已知的就可以区分元件还是焊点。因为焊点比较暗,焊盘比较亮,用黑白光计算方法、求黑占白的比例来求暗的面积占整个焊点的百分比,可检测焊锡量过多或过少。百分比越大越好。 3.编程 通过 CAD 转换很容易将 PCB、元件的坐标、种类等信息输入软件。 编程时要对 PCB 上每一种元件的各种缺陷进行编程。要画出缺陷的检测窗口;输入缺陷的名称、灯光
4、的类型、计算方法;设置合格通过)的范围;然后根据软件计算结果再调整检测窗口的大小,调整各项设置参数,使其达到对缺陷不能漏判,而且误判率最低时为止。 (1)在线编程:输入元件位置和元件的种类等信息。在线编程需要停止检验。 (2)离线编程:用棚匡框住,输入元件的种类、信息的门槛值、上限、下限等信息。 (3)可利用元件库,也可自定义。 (4)对已编好的程序可进行编辑和修改 由于元件批次不同,元件外观与示教好(元件库) 的元件外观不同发生错误时,可作简单更改; (5)文字识别(OCR)系统可检查元件的标称值和器件的型号。 (6)对 PCB 上每种元件的各种缺陷编辑完毕以后,保存在硬盘。作为该产品的检测
5、程序。 三.检测方法1.首先调出需要检测产品的检测程序。 2.将需要检测的印制板放在 AOI 中进行扫描。 3.AOI 自动将扫描并计算,将计算结果与检测程序比较,并把计算结果显示出来。 4.连续检测时,机器自动与标准检测程序进行比较,并把不合格的部分记录下来,( 做标记或打印出来)。 5.将有缺陷的板送返修站返修。 四.AOI 的应用AOI 可放置在印刷后、焊前、焊后不同位置。 1.AOI 放置在印刷后 可对焊膏的印刷质量作工序检测。可检测焊膏量过多、过少,焊膏图形的位置有无偏移、焊膏图形之间有无粘连。 2.AOl 放置在贴装机后、焊接前可对贴片质量作工序检测。可检测元件贴错、元件移位、元件
6、贴反(如电阻翻面) 、元件侧立、元件丢失、极性错误、以及贴片压力过大造成焊膏图形之间粘连等。 3.AOl 放置在再流焊炉后可作焊接质量检测。可检测元件贴错、元件移位、元件贴反(如电阻翻面)、元件丢失、极性错误、焊点润湿度、焊锡量过多、焊锡量过少、漏焊、虚焊、桥接、焊球(引脚之间的焊球)、元件翘起(竖碑) 等焊接缺陷。 五、AOL 有待改进的问题1.只能作对外观检测,不能完全代替在线测(ICT)。 2.如无法对 BGA、CSP、FlipChip 等不可见的焊点进行检测。 3.对 PLCC 也要采用侧面的 CCD 才能较准确的检测。 4.有些分辨率较低的 AOI 不能作 OCR 字符识别检测。 六
7、.X 光检测BGA、CSP、FlipChip 的焊点在器件的底部,用肉眼和 AOl 都不能检测,因此,X 光检测就成了 BGA、CSP 器件的主要检测设备。 目前 x 光检测设备大致有三种档次: 1.传输 X 射线测试系统适用于单面贴装 BGA 的板以及 SOJ、PLCC 的检测。缺点是对垂直重叠的焊点不能区分。 2.断面 x 射线、或三维 X 射线测试系统克服了传输 x 射线测试系统的缺点,该系统可以做分层断面检测,相当于工业 CT。 3.目前又推出 X 光 ICT 结合的检测设备用 ICT 可以补偿 x 光检测的不足。适用于高密度、双面贴装 BGA 的板随着 SMT 技术的普及,SMT 元
8、器件的密集化及细小化,自动光学检测设备(AOI)正被广大电子制造厂商用来监测和保证产品质量。相对于人工目视检查来说,AOI 具有更高的可重复性和更快的检测速度。八十年代曾有研究表明,当两个人检查相同的板四次时,他们的相互认同率少于 28%,认同自己的只有大约 44%左右。而尽管如此,在 2005 年前,绝大部分电子制造厂商依然依赖于人工目视检查。因为早期引进的进口 AOI 设备,给电子制造业界的朋友的感觉是:使用繁琐、复杂,价格昂贵;或者说因为 AOI 设备编程调试繁复,令工程师不能充分发挥 AOI 设备的性能,导致 AOI 未能达到预期的检测效果,从而觉得 AOI 设备只是一种“ 昂贵的摆设
9、品”。本文将从 AOI 的工作原理、如何评估 AOI 系统和如何根据具体情况配置 AOI 系统等几个方面作探讨。一、 认识 AOI 及其工作原理1、 定义:自动光学检测仪(AOI-Automated Optical Inspection)是应用于表面贴装(SMT -Surface Mounted Technology)生产流水线上的一种自动光学检查装置,可有效的检测印刷质量、贴装质量以及焊点质量。通过使用 AOI 作为减少缺陷的工具,在装配工艺过程的早期查找和消除错误 ,以实现良好的过程控制。早期发现缺陷将避免将不良品送到后工序的装配阶段,AOI 将减少修理成本将避免报废不可修理的电路板 .2
10、、主要特点:1)高速检测系统,不受 PCB 贴装密度影响;2)快速便捷的编程系统,图形化界面,所见即所得,运用贴装数据自动进行检测程序编制;3)针对不同的检测项目,结合光学成像处理技术,分别有不同的检测方法(检测算法);4)在被检测元件的贴装位置有偏移的情况下,检测窗口会自动化定位,达到高精度检测;5)显示实际错误图像,方便进行工人进行最终的目视核对;6)统计 NG 数据分析导致不良原因,实时反馈工艺信息。二、AOI 工作原理:AOI 经过十几年的发展,技术水平仍处于高速发展阶段,如何实现最佳的检测效果,一直是各 AOI厂商不断攻关的技术话题。目前国内市场上可见的 AOI 品牌众多,每种 AO
11、I 各有所长;每个品牌的 AOI优势主要体现都取决于其不同的创新核心软件算法,通常采用的软件算法有:模板比较、边缘检查、灰度模型、特征提取、固态建模、矢量分析、图形配对和傅里叶氏分析等,但尽管算法各异,AOI 的运作原理基本相同。如图所示:从上图看到,塔状的照明系统给被检测的元器件予以 360 度全方位照明,然后利用高清晰的 CCD摄像机高速采集被检测元器件的图像并传输到电脑,专用的 AOI 软件根据已经编制的检测程序进行比较、分析;判断被检测元器件是否符合预订的工艺要求。简单来说 AOI 检测元器件的过程就是模拟工人目视检查 SMT 元器件,是将人工目视检测自动化、智能化、程序化。图像获取就
12、是用 CCD 摄像机把物体表面的光信号转换成为电信号送入图像采集卡。图像采集卡将图像数字化送入计算机,这个过程很直观,容易理解。那把图像送入计算机之后,AOI 是如何检测元件的质量呢?下面以 ALeader AOI 举例说明:ALeader AOI 是“东莞神州视觉科技有限公司”在 2002 年开始研发的, 2004 年便制造出中国第一台可以媲美国外的 AOI 设备,在国内 AOI 发展中起到了不可替代的作用,他们完全摒弃一些传统 AOI 的计算模式,采用自主创新的统计建模技术、光学原理以及图像比对原理:1、光学原理:采用环形塔状的三色 LED 光源照明,由不同的角度射出红(R)、绿(G)、蓝
13、(B)以及三色光组合得到的白色(W )光分别投射到 PCB 上,对被测元器件予以 360 度全方位照明。通过光的反射、斜面反射、漫反射分别得到元件本体、焊点、焊盘的不同颜色信息。如下图所示:焊盘的表面光滑,红色光在其表面产生镜面反射,而大部分蓝色光则反射出,因此焊盘得到的颜色为红色或者黄白色。蓝色与黄色光都在其表面产生漫反射,根据调色原理,蓝色与黄色调和得到白色光,相当于原件本体接受了白色光照,因此原件本体显示为本身的颜色焊点(锡膏)通常形成一个斜面,这样,大部分黄色的光通过斜面反射出去,而蓝色的光则通过反射进入镜头,所以得到的焊点颜色为蓝色2、图像比对原理:它是通过 CCD 摄像机抓取,再经
14、过图像处理(即根据像素分布、亮度和颜色等信息转化成为我们所需要的数字信号)。将这些数字信号通过某种数学计算方法得到一个标准的误差阀值,然后将每个被测试的图像得到的阀值与系统中已修正好的标准阀值进行比较,如果比较结果小于标准阀值则该图像通过检测,否则判别为不合格。3、 统计建模技术:上面提到的一个待测图像需要与系统中的标准图像进行比较,那么标准图像就是通过“统计建模” 所得到的。通常,ALeader AOI 经过学习一系列合格图像的模板,让计算机自动记忆所有 OK 图像的大致特征,得到图像的外形变化以及未来可能发生的变化方式特征,生成一副多元化的合格图像模型。如下图所示:收集了所有 OK 样本的
15、变化规律三、如何评估和配置 AOI 系统:我们知道,目前的 AOI 分为离线式 AOI(Off line)和在线式 AOI(In line)两种。笔者在与客户沟通时,经常会与工程师们谈起选择用在线 AOI 还是离线 AOI 的话题;其实,具体用在线 AOI 还是离线 AOI 的必须要根据自身的实际情况去权衡;如果是小批量、多 Model,转线频繁的厂家采用离线式 AOI 是最佳选择,因为检测速度可以满足 1.5 条高速贴片线的需要,且易搬动,可以灵活对应对任何工序的检查需要;在线式往往固定于某一工序检查,一般应用于长期固定的品种检测上面,这样免去了程序调试的时间、提高了设备的使用率和稳定性。另
16、外,把 AOI 运用在哪个工序进行检测的话题也始终在讨论。AOI 在 SMT 中的应用主要有三个典型的位置,分别是:锡膏印刷或点胶后、贴片后以及回流炉后。应用在不同的工序,所检测的项目和重点也不一样,如何运用 AOI 来提高品质、降低不良,应该根据自身的工艺水平和难点进行配置,如下图所示:印刷机后:通常来说,有缺陷的焊接均来源于有缺陷的锡膏印刷。在这个阶段,你可以很容易、很经济地清除掉 PCB 上的焊接缺陷。大多数 2-D 的检测系统便能监控锡膏的偏移和歪斜、不足的印刷区域以及溅锡和短路等。贴片后检测:可以有效防止元件的缺失、极性、移位、立碑、反面等等。回流焊接之后:位于生产线的末端,检测系统
17、可以检查元件的缺失,偏移和歪斜的情况,焊点的正确性和锡膏不足、焊接短路以及翘脚和所有极性方面的缺陷。至于应该将 AOI 应用在哪一工序,应该根据元件和工艺的类型、和对产品可靠性的要求进行。如果使用许多 BGA、芯片级封装(CSP )或者倒装芯片元件,就需要将检测系统应用到印刷后和片式贴装后,以发挥其最大的功效。另外,在炉后进行检测可以有效地发现低档消费品的缺陷。而对运用在航空航天、医学及安全产品(汽车气囊)领域的 PCB 来说,由于对质量要求十分严格,则可能会要求在生产线上的许多地方都进行检测,尤其是在片式贴装和炉后。当然,也要根据本身的经济状况来放置 AOI,以最求最高的性价比,发挥一台设备
18、的最佳性能来实现我们理想的效果。谈到如何评估 AOI 是否符合本公司的要求,首先每家电子制造厂家的生产环境不一样、需求的不一致以及工艺质量的差异等等,目前对 AOI 的评估也没有一个标准通用的方案,可谓是各有千秋。但总体都围绕以下几点来进行 AOI 的评估。1.依据 AOI 检测系统报错的准确率,即真实错误(准确报错)对误报(虚假报错)的比例来评估其好坏是不全面的。因为在试用设备的时候往往采用人为制作 NG 来“ 考验”AOI 的检测能力,其实 AOI 对于手动的这种发生极大差异变化的 NG 类型是毫无疑问的,必须实时测试和工程师亲自操作实现评估目的。2.引进 AOI 进行测试并不仅仅是为了替
19、代人工目视检查,它还必须来提高我们的制程能力和改善工艺水平,AOI 与 SPC 的结合,给我们提供了极大的便利性,通过 AOI 测试后自动生成了一系列的缺陷数据,这些数据又通过 SPC 分析得到准确的工艺差,根据这些信息我们相应的对前工序采取预防和改善,当然是可以提高产品品质和降低维修成本的。3.需要考虑产品的易用性、比如说编程速度、检测速度等,笔者知道 ALeader 全新的升级检测系统配备有自动编程的功能,通过 CAD 数据自动搜索相应的元件物料号来完成编程投入测试,另外在手工编程时,同一类型的元件自动识别、自动画框,这样便大大提高了我们设定 AOI 监测点的时间。4.当然,售后服务的考虑
20、也是必不可少的,主要考虑供应商的服务工程师人数,办事处分布点,和备件维护的周期性,等等。总而言之,SMT 生产使用 AOI 来对品质进行监测是必然趋势;广大 SMT 生产厂商已经意识到这点,而主动开始了解及引入适合自己的 AOI 系统,不断的提升及稳定其品质。如何选择一台能灵活应对市场变化的 AOI 和如何用好 AOI 是我们应该长期摸索和探讨的一个话题,能够实时监控和反馈工艺信息的 AOI 定会是广大客户的追求所在,相信随着 AOI 技术的不断创新和改善,SMT 实现自动化指日可待。大家都知道:目前电子行业发展的趋势是元件越来越小、密度越来越高,客户端的品质要求也在不断的提高,人工检测产品的
21、速度和质量已经满足不了工业化的要求,在这样的一个环境下,便相继出现了各式各样的机器检测设备,像 ICT(In Circuit Test), FT(Function Test),AOI(Auto Optical Inspection), AXI(Auto X-ray Inspection)等等,这些设备各自有着不同的特点,ICT,FT 是基于电信号的,AOI 和 AXI 都是光学的检测设备,不同的是 AXI 是利用 X-ray 进行检测的, 而 AOI 是利用可见光(像 LED 灯)进行检测。和其他检测设备比较, 本人认为 AOI 更具有准确、快速、稳定、可靠的特点,正因为具备这些显著的特点才使
22、得 AOI 目前在 SMT 生产线上得到的广泛应用。 作为潜心钻研 AOI 的一员,我想和大家讨论一下以下两个方面的内容:(1) AOI 如何检测 PCB 板的?(2) AOI 未来的发展趋势;第一个问题,AOI 是如何检测 PCB 板,这是 AOI 的核心问题,也是一个非常综合性的问题,关系到AOI 所用的基本原理和其工业实现的方方面面,我今天只和大家探讨以下几个比较重要的问题:1. AOI 的基本工作原理.从上图看到 AOI 就是用摄像机等硬件设备获取被检测物体的图像,然后用软件比较、分析、判断被检测物体是否 OK。也就是说 AOI 检测物体的过程是模拟人眼检测物体,是将人工检测物体自动化
23、、智能化。图像获取就是用 CCD 摄像机把物体表面的光信号转换成为电信号送入图像采集卡。图像采集卡将图像数字化送入计算机,这个过程很直观,容易理解。那把图像送入计算机之后,AOI 是如何检测元件的质量呢?2. AOI 是如何判贴片的质量?人们判断一个物体的质量是否合格,总是要实现设定一个标准,如果达到标准,则认为该对象是合格,如果不达到标准,则认为对象不合格。同样,AOI 判断一个元件是否是 OK 的,也设定一个规则,满足规则的就 OK,不满足规则的就是 NG 的。AOI 针对不同的元件选用不同的规则,最常用的规则就是标准图像,就是事先给某个贴片指定一个标准图像,如果被检测贴片的图像和标准图像
24、很相似,那么我们认为这个贴片是 OK 的,如果不相似,则认为是 NG 的,在图像处理行业,我们称这种规则是图像比对或者说是模板匹配。另外还有一些特定的规则,像指定 IC 之间不能桥接,这不是通过指定一个标准图像,而是个通过某种算法计算两 IC 之间是否有连接物的方法判断 IC 是否有桥接现象。理论上大家都知道来设定标准图像作为一个规则判断元件的质量,实际上如何制定标准图,如何计算相似度,市面上纷繁复杂的 AOI 各有不同的做法,我们 Aleader-AOI 的做法是利用自主开发的统计建模技术,那么统计的是什么?建立的模型又是什么呢?我们通常是统计一系列 OK 样板的变化规律,包括 OK 元件大
25、致像什么,可能有一些什么样的变化,可能变化到什么程度。而建立完的模型就是每一个元件都有一个标准图像和两个辅助图像;对于统计建模,大家可能有下面两个问题:(1) 既然是为了图像比对,人眼看起来元件都差不多,注册一个 OK 元件的图像就可以了,为什么还要学习多个 OK 元件呢?通过我们反复试验发现,摄像机是放大了元件的差异,也就是说虽然人眼看 OK 元件都差不多,但是 OK 元件图像实际上都大大小小的存在一定的差异,并且不同的元件的差异性不同,有的元件差异性比较小,有的元件的差异性很大,对于那些差异小的元件注册一个标准就可以了,但是差异性比较大的元件,如果只注册一个标准就很容易造成误判,用统计建模
26、的方法,在学习的时候,差异小的统计学习之后两个辅助图像的差异性比较小,差异大的元件统计学习之后两个辅助图像的差异也比较大,这样对不同的元件采用不同的差异标准进行判断,更加合理;(2 既然 OK 元件图像之间有一定的差异,注册多个标准就可以达到检测的效果了,统计建模和这种多个标准的方法有什么区别呢?同样我们通过实践发现:多个标准进行比较的时候就要依次和多个标准进行相似度的计算,看被检测图像是否和某个标准图像的相似度可以达到判断 OK 的要求。而统计建模后只保存了标准图像和两个辅助图像,进行图像比对的时候被检测图像也只用和其标准图像一个进行相似度计算,大大减少了计算次数,提升了检测速度。了解了 A
27、OI 是如何判断贴片缺陷的理论,我们还要考虑 AOI 的速度是如何达到工业应用的要求的? 3. AOI 检测的速度前面我们介绍 AOI 工作原理的时候,AOI 主要有获取图像,处理图像两个不同的步骤;对于获取图像来说,因为相机的 FOV(Field Of Vision)有限,因此就必须通过 XY 平台来移动相机或者 PCB 才能拍摄到整个 PCB 板上的元件;也就是说 AOI 必须协调软硬件同时工作,要考虑摄像机什么时候开始拍照,什么时候要移动,移动到什么地方,什么时候开始图像处理等等各方面的问题;为了节约运动的时间,ALEADER AOI 采用了下面两个方法:a. 必须采用最少的拍摄次数将所
28、有零件拍摄镜头的自动分配b. 运动路径必须最短路径自动优化用最少的镜头和最短路径来减少机械运动的次数和时间。除了减少获取图像的运行时间外,ALEADER-AOI 在其他方面也做了大量的优化:a. 使用多核处理器和多线程;b. 使用 CPU 的多媒体指令,普通的 CPU 指令是单指令单数据,而这些多媒体指令可以实现单指令多数据,在同样的时间内可以处理多个数据,大大增强了 CPU 的图像处理能力,减少了 AOI 图像处理的时间。这些软硬件方面的优化以及前面提到的统计建模技术,大大提高了 ALEADER-AOI 的检测速度;有的朋友可能会提出这样一个问题,最小路径是一个很正常的想法,为什么 ALEA
29、DER-AOI 仍要特殊考虑呢?因为相机按 CCD 排列方式的不同分两种,面阵相机和线阵相机,线阵相机就像我们常见的扫描仪,特点就是速度快,使用线阵相机的 AOI 一般是扫描完整个 PCB 板,然后再做检测,显然不用考虑路径优化的问题。但是因为线扫描的关系,它的打光主要采用顶光源, FOV 范围内的元件在不同方向和角度接受的光照条件不一致,那么对于那些带有高元件的 PCB 板,高元件的阴影就会影响低元件的图像,并且如果 PCB 放在 AOI 的方向不一致,元件的亮度也会有一定的差异,因此使用线阵相机图像质量不够稳定。而面扫描相机采用的光源是环形光源,就像常说的无影灯,摄像机 FOV 内光照一致
30、,保证了图像的质量,但是面阵相机的速度没有线阵相机快,使用路径优化就是为了弥补面阵相机速度方面的不足。并且随着软硬件技术的进步,以及前面我们所提到的优化方案,使用面阵相机在保证图像质量和检测质量的基础上,也能达到工业应用的要求。4. 编程的难易程度使用 AOI 制作程序,需要标出那些元件是需要检测,如果手工画出这些元件肯定是非常麻烦的,最快的方法就是使用 CAD 的数据,利用 PCB 设计时候的数据自动画出检测的位置和检测的类型;如果没有 CAD 数据,要手工增加监测点,怎么能快速的,准确的制作出检测程序是一个非常值得考虑的问题。ALEADERAOI 的做法是建立元件库,根据元件库的元件,自动
31、生成检测框。如果认为元件库的图像和现在的图像的差异超出了一定的范围,还可以重新注册标准,或者调整元件框的大小和位置;这样的做法对于长期使用的元件比较合适,对于一些新的元件,另外如果没有元件库,有多个一样的元件,例如对于 IC 这样特殊的元件,我们采用的自动定位自动画框的方法,就是先注册一个标准,然后软件自动识别应该检测的其他位置,这样就可以在没有设计数据情况下快速画框。具体的例子看我们下面的这两幅图像,第一个框是人工自动画上去的,注册为标准,后面这些框就是自动生成的 ,非常快速的就完成了这些元件的自动画框问题;(图示:)三 在了解了 AOI 的一些基本功能和算法之后,我想展望一下 AOI 技术
32、的发展趋势,(1)分类检测我们知道 AOI 在 SMT 流水线中放置的位置不同,检测的重点就不同,并且不同的元件,要检测的缺陷类型也不同,譬如说焊点主要检测的就是有无锡膏,是否多锡、少锡等,元件本体就要检测是否缺件、偏移、错件等情况,带有丝印的还要做 OCV,IC 要检测是否有桥接等等,另外有一些三极管就要有极性检测;这样不同的检测类型,就要选择不同的检测方法,不同的方法针对某种或者某几种缺陷类型才能提高检测效果,减少误判。(2) Bad Mark 的检测,拼板与多 MARK 检测,和 BarCode 等功能AOI 要适应印刷机的变化,像 Bad Mark 就可以不检测,机器检测到一块 PCB
33、 板就不印刷了,AOI 也应该检测到 Bad Mark 就报出 Bad Mark;另外某些印刷机可能是多板同时印刷的,像阴阳板这样的情况现在也比较常见, 那么检测的时候 AOI 的程序就需要是两个或者多个 PCB 的检测程序同时运行,才能达到要求;另外一个就是一些板子用条形码来标记板子,那么就需要 AOI 加入 barcode 功能来识别这些条形码。这些功能都是为了适应 SMT 行业变化和要求,给 AOI 带来的一些发展。(3) AOI 与 SPC 的进一步结合SPC(Statistical Process Control)即统计过程控制。SPC 主要是应用统计技术对生产过程进行实时监控,科学
34、的区分出生产过程中产品质量的随机波动与异常波动,从而对生产过程的异常趋势及时提出报警,以便生产管理人员及时发现异常, 采取对策,把质量隐患消灭在萌芽状态,达到防患于未然,减少或避免坏品的产生,以达到提高产品品质,节约成本的目的,所以 SPC 数据也是衡量产品质量的一个重要数据。SPC 是控制产品质量的一种技术,AOI 是检测产品的质量的的一种工具,如何根据 AOI/SPC 数据建立一个实时工艺控制(RPC, real-time process control)系统,达到 AOI/SPC 结合的闭环控制和 SMT 的全自动生产工艺是一个非常吸引人的一个问题。但是,现在一般的 AOI/SPC 功能
35、仅仅考虑了 NG 元件的类型和数量等的数据分析;要想达到上面所描述的一个理想状态,就需要 AOI/SPC 进一步的接合,需要考虑 SPC 还需要统计什么数据,怎样分析这些数据,以及这些数据如何调整 SMT 流程等一系列复杂的问题。同时,还需要考虑包括远程控制等其他方面的问题;(4)真正的彩色图像处理技术现在的 AOI 虽然用的是 3CCD 的相机,抓取的彩色的图像,大部分的算法只提取了颜色中的部分信息,例如灰度,来进行图像的识别,或者将 RGB 颜色空间的三个通道分别处理后再合成,或者将 RGB空间转化成为 HSI 空间或者其他颜色空间后再转换回 RGB 颜色空间,这些方法对彩色图像处理的效果
36、都不是很明显,因为 RGB 颜色空间三通道之间的相关性很高,遗憾的到目前为止,人类对大脑的颜色处理机制仍未完全理解,还处于一个试验和探索阶段,目前已成为图像处理技术一个难题。因此,如何充分利用 RGB 三颜色通道的信息,是彩色图像处理的关键,也是 AOI 技术的一个飞跃。(5)拓展应用:目前,市面上所见的 AOI 基本只应用于 SMTSMD。但 ALEADER AOI 因为其独特的计算方法可以运用在其他的外观检测上面,比如,键盘的字符检测、铆钉检测、针脚检测等等,ALEADER AOI 在应用领域上又迎来了一个崭新的春天。让 AOI 不再局限于 SMT 应用我认为是未来几年的必然发展方向和流行
37、趋势。以上是我认为 AOI 在 SMT 行业应用上的几点肤浅认识,如有不足处,敬请斧正,也欢迎大家能和我一起探讨 AOI 的发展。对于 PCB 装配,AOI 的优点视觉检查的特征和板上的电子元件是直接了当的。元件与其下面 PCB 的形状、尺寸、颜色和表面特征是轮廓分明的,元件可以在板的表面上可预见的位置找到。由于这个简单性,PCB 装配的自动检查在 25 年前成为计算机化的图象分析技术的首例工业应用。功能强度的 AOI 技术证明是对传统测试方法的经济、可靠的补充。AOI 正成功地作为测量印刷机或元件贴装机性能的过程监测工具。实际的优点包括: 检查和纠正 PCB 缺陷,在过程监测期间进行的成本远
38、远低于在最终测试和检查之后进行的成本,通常达到十几倍。 过程表现的趋势 - 贴装位移或不正确的料盘安装 - 可以在整个过程的较早时候发现和纠正。没有早期检查,重复的太多有相同缺陷的板将在功能测试和最后检查期间被拒绝。 当 AOI 用于在元件贴放之后、回流之前的元件贴装检查时,较早地发现丢失、歪斜、无放的元件或极性错误的元件,减少成本高的回流后返修。 回流焊接后的 AOI 比用于焊点缺陷,如锡桥、破裂焊点、干焊点和其它缺陷,检查的 X 射线检查成本低。可是,锡点检查无可争辩地是基于运算法则(Algorithm-based)的 AOI 系统的最困难的任务,因为可接受外表的变量范围广。 传统 AOI
39、 系统的局限基本上,所有 AOI 方法可描述为,通过一列摄像机或传感器获得一块板的照明图象并数字化,然后分析和与前面定义的“好” 图象进行比较。照明来自于一个范围的光源,如白光、发光二极管 (LED)和激光。今天,有许多完善的图象分析技术,包括:模板比较(template-matching)(或自动对比 auto-correlation)、边缘检查 (edge-detection)、特征提取(feature extraction)、灰度模型(gray modeling)、傅里叶分析(Fourier analysis)、形状、光学特征识别 (OCR, optical character reco
40、gnition)、还有许多。每个技术都有优势和局限。模板比较(Template-matching)模板比较决定一个所希望的物体图像平均地看上去象什么,如片状电容或 QFP,并用该信息来产生一个刚性的基于像素的模板。这是横越板的图像,在预计物体位置的附近,找出相同的东西。当有关区域的所有点评估之后和找出模板与图像之间有最小差别的位置之后,停止搜寻。为每个要检查的物体产生这种模板,通过在适当的位置使用适当的模板建立对整个板的检查程序,来查找所有要求的元件。因为元件很少刚好匹配模板,模板是用一定数量的容许误差来确认匹配的,只要当元件图像相当接近模板。如果模板太僵硬,可能产生对元件的“误报” 。如果模
41、板松散到接受大范围的可能变量,也会导致误报。运算法则(Algorithm)经常,几种流行的图像分析技术结合在一个“处方” 内,形成一个运算法则,特别适合于特殊的元件类型。在有许多元件的复杂板上,这可能造成众多的不同运算法则,要求工程师在需要改变或调整时作大量的重新编程。例如,当一个供应商修改一个标准元件时,对该元件的运算法则处方可能需要调整,消耗珍贵的编程时间。还有,相同元件类型的外形可能变化很大,一个不同一个。随着时间的过去,新的变化出现,用户必须调整或“扭转” 运算法则来接纳所有可能的变化。例如,一个 0805 片电容,可以分类为具有一定尺寸和矩形形状,两条亮边中间包围较黑色的区域。然而,
42、这个外部简单的元件外形当在一个单一的生产运行中光学检查时可以变化很大,如图一所示。传统的、基于运算法则的 AOI 方法经常太过严格,以致于不能接纳合理的变化,如对比度、尺寸、形状和阴影。甚至不重要的元件也可能难以可靠地查找和检查,因此造成有元件而系统不能发现的“错误拒绝” 。还有,因为可接受与不可接受图像的差别相当细小,运算法则不能区分,引起“ 错误接收”,真正缺陷不能发现。为了解决一些这种问题,用户不得不在图像分析领域要有适当的见识。还有,传统的 AOI 要求不断的和广泛的再编程。用户需要经常调整其 AOI 方法,以接纳合理的变化。所有这些可花上一到两天作细小的扭转,甚至几周,当对一个新板设
43、计与优化一个检查程序时。有自调性的、基于知识的 AOI几个 AOI 供应商已经打破图像处理的传统方法,而正使用有自调性的软件技术。一个方法 *是设计将用户从运算法则的复杂性分开。通过显示一系列要确认物体的例子,该方法使用一个令人惊讶的直截了当的数学技术,叫做统计外形建模技术(SAM, statistical appearance modeling),来自动计算出怎样识别合理的图像变化。不象基于运算法则的方法,统计外形建模技术(SAM) 使用自调性、基于知识的软件来计算出变量。这戏剧性地减少编程时间和实际上消除每天的调整。事实上,这个方法通常返回误报率比现有的AOI 方法好 1020 倍。SAM
44、 是怎样工作的在显示了一个特殊物体的一系列已知好的样板之后,SAM 软件建立一个该物体的灵活的数学模型。当它检查更多样板的时候,软件不断地调整其估量,该物体应该象什么?由于自然尺寸、形状、颜色和表面图案的变化,其外形可怎样地合理变化?不象现有的处方方法,它需要基于用户认为他们了解元件变化的运算法则,SAM 是一个经验方法,不要求使用者的内在理解或检查系统的决定。使用者在目标物体周围画一个方块,然后给 AOI 系统显示一系列的样板。通过观察,SAM 软件立即建立在一个可接受的物体中寻找什么的详细模型。一个 SAM 模型是在训练周期期间建立的,在这里存储和分析一个所希望的元件类型的样板,确认最重要
45、的变化模式。这允许该 AOI 系统找出元件变化和未来可能变化方式的特征。然后按照预计元件的图像来评估该 SAM 模型。如果元件的外形在模型内变化方式所定义的极限之内,软件肯定元件的存在,并且比较其位置的公差。随着新的样板和图像加入到 SAM 模型,该模型观察变化并调整结合所有的在好图像中看到的视觉差别。这也增加系统区分可接受与不可接受图像的能力,使得误报率随着系统的学习越多而改善。不象使用刚性模板的处方方法,SAM 允许 AOI 机器自己决定一个元件的哪个方面可能变化,变化多少,没有使用者的直接输入。在现实环境中,SAM 系统必须看大约 20 块 PCB,才可看到它将要遇到的大部分变化。在这个
46、培训阶段,使用者的反馈是需要的。软件将标记看上去要失效的边界线元件,要求使用者确认,以便 SAM 模型可以相应调整。精度、可重复性和灵活性许多传统的 AOI 系统主要依靠识别元件边缘来达到准确和可重复的测量。一旦边缘找到,利用这些边缘的对称模型通常产生元件在板表面上的坐标。可是,用视觉技术很难找到边缘。因为元件边缘不是完全直线的,将一条直线去配合这种边缘的企图都是有问题的。还有,边缘倾向于是黑色背景上的黑色区域,准确的确认会产生像素噪音变量。像素不能足够小,以避免一些像素分割的影响,像素分割就是一个物体的细节坐落在两个像素之间。使用基于边缘的处方方法,一个好的视觉系统产生一个标准偏差大约为十分
47、之一像素的可重复性。可是,SAM 技术提供标准偏差相当于 20 分之一像素的可重复性。元件位置上的总变量小于一个像素的十分之三,因此当匹配到一个元件时,改进精度和可重复性。当检查一个特定元件类型时,SAM 的模型是内在灵活的。在吻合一个外形大不相同的合法元件时(如刚性的传统方法) ,它会在 X 和 Y 轴上移动,企图通过位置(唯一的可变参数) 调节达到最佳吻合。通过将一个适当的 SAM 模型吻合元件 - 其变量受控制,只允许实际上可发生的哪些外形 - 外形调节到最佳位置,而不要妥协 X 和 Y 的位置。例如,某些可允许的元件颜色变量是由于遮蔽或过度曝光临近较大元件所引起的,实际上用传统运算法则
48、是不可能接纳的。因为 SAM 计算出所允许的图像变更,所以使用者不需要依靠那些要求大量编程的运算法则,或者供应商供应的对不同元件的运算法则库。SAM 方法有效地识别元件和板上的标记和文字变量。传统的基于 OCR 的技术很难应付印刷质量或外形的变化,但是 SAM 方法把这种变化识别为只是合理变化的另一种形式而已。立体视觉光学传统的 AOI 系统不能完全接纳 PCB 外形由于局部弯曲产生的自然三维 (3-D)变化,甚至物理上夹紧一块板都不能保证绝对平面性。现有的 AOI 方法通常使用远心(telecentric)透镜来从光学上去掉视差与透视的效果。因为高度上的透视效果去掉了,在图像边缘上的物体看上
49、去好象与中间的物体在同一平面上。虽然这消除了光学视差错误,但是应该跟随板表面弧形的点与点之间的测量成为跨过平面弦的直线距离。这造成重要的测量误差和自动去掉有关板表面形状的有价值信息。通过将 SAM 技术与两排摄像机的立体视觉安排相结合,这个完整的 AOI 系统可测量和接纳物体与表面高度,结果在数学上使 PCB 变平。这些有角度的摄像机提供物体的两个透视,然后计算 PCB 的高度地图或三维(3-D) 表面拓扑图形。在板上任何元件的精确 X 和 Y 的位置也通过计入其在板表面的高度来计算。一些 AOI 机器使用一个标准板传送带来在摄像机下面移动 PCB,通过简单高频荧光管来照明。随着板在传送带上按刻度移动,在摄像机排列之下通过, 通过将图像的立体象对排列构成一幅照相镶嵌图(photo-mosaic image)。然后这个照相镶嵌图合成地变平和实时地分析。SAM 自调性建模技术与立体视觉成像技术的这种结合已经显示出优越于现有 AOI 技术的精度和可重复性。这个新的 AOI 技术已经证明是理想地使用于精密和可靠的贴装后与回流前的元件确认和 PCB检查。结论现有的 AOI 基于运算法则的系统对于处理发生在今天的 PCB 与固态元件中的外形变化程