收藏 分享(赏)

2.1 平面应力和平面应变.ppt

上传人:精品资料 文档编号:10459330 上传时间:2019-11-14 格式:PPT 页数:32 大小:1.25MB
下载 相关 举报
2.1 平面应力和平面应变.ppt_第1页
第1页 / 共32页
2.1 平面应力和平面应变.ppt_第2页
第2页 / 共32页
2.1 平面应力和平面应变.ppt_第3页
第3页 / 共32页
2.1 平面应力和平面应变.ppt_第4页
第4页 / 共32页
2.1 平面应力和平面应变.ppt_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、弹性力学的平面问题,要点, 建立平面问题的基本方程,包括:平衡微分方程;几何方程;物理方程;边界条件的描述等,一 平面应力问题与平面应变问题,1. 平面应力问题,(1) 几何特征,一个方向的尺寸比另两个方向的尺寸小得多。, 平板,如:板式吊钩,旋转圆盘,工字形梁的腹板等,(2) 受力特征,外力(体力、面力)和约束,仅平行于板面作用,沿 z 方向不变化。,(3) 应力特征,如图选取坐标系,以板的中面为xy 平面,垂直于中面的任一直线为 z 轴。,由于板面上不受力,有,因板很薄,且外力沿 z 轴方向不变。,可认为整个薄板的各点都有:,由剪应力互等定理,有,结论:,平面应力问题只有三个应力分量:,应

2、变分量、位移分量也仅为 x、y 的函数,与 z 无关。,2. 平面应变问题,(1) 几何特征,水坝,滚柱,厚壁圆筒,一个方向的尺寸比另两个方向的尺寸大得多,且沿长度方向几何形状和尺寸不变化。, 近似认为无限长,(2) 外力特征,外力(体力、面力)平行于横截面作用,且沿长度 z 方向不变化。,约束 沿长度 z 方向不变化。,(3) 变形特征,如图建立坐标系:以任一横截面为 xy 面,任一纵线为 z 轴。,设 z方向为无限长,则,沿 z 方向都不变化,,仅为 x,y 的函数。,任一横截面均可视为对称面,水坝,因为任一横截面均可视为对称面,则有,所有各点的位移矢量都平行于 x y 平面。, 平面位移

3、问题, 平面应变问题,注:,(1)平面应变问题中,但是,,(2)平面应变问题中应力分量:, 仅为 x y 的函数。,可近似为平面应变问题的例子:,煤矿巷道的变形与破坏分析;挡土墙;重力坝等。,如图所示三种情形,是否都属平面问题?是平面应力问题还是平面应变问题?,平面应力问题,平面应变问题,非平面问题,平面应力问题,平面应变问题,非平面问题,3. 平面问题的求解,问题:,已知:外力(体力、面力)、边界条件,,求:, 仅为 x y 的函数,需建立三个方面的关系:,(1)静力学关系:,(2)几何学关系:,(3)物理学关系:,形变与应力间的关系。,应力与体力、面力间的关系;,形变与位移间的关系;,建立

4、边界条件:, 平衡微分方程, 几何方程, 物理方程,(1)应力边界条件;,(2)位移边界条件;,二 平面问题基本方程,平面问题的平衡微分方程:,(2),说明:,(1)两个平衡微分方程,三个未知量:, 超静定问题,需找补充方程才能求解。,(2)对于平面应变问题,x、y方向的平衡方程相同,z方向自成平衡,上述方程两类平面问题均适用;,(3)平衡方程中不含E、v,方程与材料性质无关(钢、石料、混凝土等);,(4)平衡方程对整个弹性体内都满足,包括边界。, 平面问题的应力边界条件,斜面上的应力,几何方程,说明:,(1),反映任一点的位移与该点应变间的关系,是弹性力学的基本方程之一。,(2),当 u、v

5、 已知,则 可完全确定;反之,已知 ,不能确定u、v。,(积分需要确定积分常数,由边界条件决定。),(3), 以两线段夹角减小为正,增大为负。,2. 刚体位移,物体无变形,只有刚体位移。 即:,(a),(b),(c),由(a)、(b)可求得:,(d),将(d)代入(c),得:,或写成:,上式中,左边仅为 y 的函数,右边仅 x 的函数,两边只能等于同一常数,即,(d),积分(e) ,得:,(e),其中,u0、v0为积分常数。 (x、y方向的刚体位移),代入(d)得:,(10), 刚体位移表达式,讨论:,(1),仅有x方向平移。,(2),仅有y方向平移。,(3),r,说明:, P点沿切向绕O点转

6、动, 绕O点转过的角度(刚性转动),物理方程,建立:平面问题中应力与应变的关系,物理方程也称:本构方程、本构关系、物性方程。,1. 各向同性弹性体的物理方程,在完全弹性和各向同性的情况下,物性方程即为材料力学中的广义虎克(Hooke)定律。,(13),其中:E为拉压弹性模量;G为剪切弹性模量;v为侧向收缩系数,又称泊松比。,(1)平面应力问题的物理方程,由于平面应力问题中,(15), 平面应力问题的物理方程,注:,(1),(2), 物理方程的另一形式,(2)平面应变问题的物理方程,由于平面应变问题中,(16), 平面应变问题的物理方程,注:,(2),平面应变问题 物理方程的另一形式:,由式(1

7、3)第三式,得,?,(3)两类平面问题物理方程的转换:,(16), 平面应变问题的物理方程,(1),平面应力问题,平面应变问题,材料常数的转换为:,(2),平面应变问题,平面应力问题,材料常数的转换为:,边界条件,1. 弹性力学平面问题的基本方程,(1)平衡方程:,(2),(2)几何方程:,(9),(3)物理方程:,未知量数:,8个,方程数:,8个,结论:,在适当的边界条件下,上述8个方程可解。,2. 边界条件及其分类,边界条件:,建立边界上的物理量与内部物理量间的关系。,是力学计算模型建立的重要环节。,边界分类,(1)位移边界,(2)应力边界,(3)混合边界, 三类边界,(1)位移边界条件,

8、位移分量已知的边界 位移边界,用us 、 vs表示边界上的位移分量, 表示边界上位移分量的已知函数,则位移边界条件可表达为:,(17), 平面问题的位移边界条件,说明:,称为固定位移边界。,(2)应力边界条件,给定面力分量 边界 应力边界,由前面斜面的应力分析,得,式中取:,得到:,(18),式中:,l、m 为边界外法线关于 x、y 轴的方向余弦。如:, 平面问题的应力边界条件,垂直 x 轴的边界:,垂直 y 轴的边界:,例1,如图所示,试写出其边界条件。,q,(1),(2),(3),(4),说明:,x = 0 的边界条件,是有矛盾的。由此只能求出结果:,内容回顾:,1.,两类平面问题:,平面

9、应力问题,平面应变问题,几何特征;,受力特征;,应力特征。,几何特征;,受力特征;,应变特征。,水坝,滚柱,位移边界条件,2.,平面问题的基本方程:,(1)平衡方程:,(2),(2)几何方程:,(9),(3)物理方程:,(4)边界条件:,1),2),应力边界条件,平面应力问题,例2,如图所示,试写出其边界条件。,(1),AB段(y = 0):,代入边界条件公式,有,(2),BC段(x = l):,(3),AC段(y =x tan ):,例3,图示水坝,试写出其边界条件。,左侧面:,由应力边界条件公式,有,右侧面:,例4,图示薄板,在y方向受均匀拉力作用,证明在板中间突出部分的尖点A处无应力存在

10、。,解:, 平面应力问题,在 AC、AB 边界上无面力作用。即,AB 边界:,由应力边界条件公式,有,(1),AC 边界:,代入应力边界条件公式,有,(2),A 点同处于 AB 和 AC 的边界,满足式(1)和(2),解得, A 点处无应力作用,例5,图示楔形体,试写出其边界条件。,图示构件,试写出其边界条件。,例6,例5,图示楔形体,试写出其边界条件。,上侧:,下侧:,图示构件,试写出其应力边界条件。,例6,上侧:,下侧:,(3)混合边界条件,(1),物体上的一部分边界为位移边界,另一部为应力边界。,(2),物体的同一部分边界上,其中一个为位移边界条件,另一为应力边界条件。如:,图(a):, 位移边界条件, 应力边界条件,图(b):, 位移边界条件, 应力边界条件,平面问题的基本方程,1. 平衡微分方程,(2),2. 几何方程,(9),3. 物理方程,(平面应力问题),(15),4. 边界条件,位移:,(17),应力:,(18),

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报