1、慧心六升初应用题专项练习(一)答案1、电影票原价每张若干元,现在每张降低 3 元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价 x 元(x-3)(1+1/2)=(1+1/5)x(1+1/5)x 这一步是什么意思,为什么这么做(x-3)现在电影票的单价(1+1/2)假如原来观众总数为整体 1,则现在的观众人数为(1+2/1) 左边算式求出了总收入(1+1/5)x其实这个算式应该是:1x*(1+5/1) 把原观众人数看成整体 1,则原来应收入 1x 元,而现在增加了原来的五分之一,就应该再*(1+5/1) ,减缩后得到(1+1/5x)如此计算后得到总收入,使方程左右
2、相等2、甲乙在银行存款共 9600 元,如果两人分别取出自己存款的 40%,再从甲存款中提 120 元给乙。这时两人钱相等,求 乙的存款取 40后,存款有9600(140)5760(元)这时,乙有:576021203000(元)乙原来有:3000(140)5000(元)3、小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少 1/4!”小亮说:“你要是能给我你的 1/6,我就比你多 2 个了。 ”小明原有玻璃球多少个?小明说:“你有球的个数比我少 1/4!” ,则想成小明的球的个数为 4 份,则小亮的球的个数为 3 份4*1/62/3 (小明要给小亮 2/3 份玻璃球)小明还剩:4-2/33
3、 又 1/3(份)小亮现有:3+2/33 又 2/3(份)这多出来的 1/3 份对应的量为 2,则一份里有:3*26(个)小明原有 4 份玻璃球,又知每份玻璃球为 6 个,则小明原有玻璃球 4*624(个)4、搬运一个仓库的货物,甲需要 10 小时,乙需要 12 小时,丙需要 15 小时.有同样的仓库 A 和 B,甲在 A 仓库、乙在 B 仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是 1.现在相当于三人共同完成工作量 2,所需时间是解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当
4、然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运 4三人共同搬完,需要60 2(6+ 5+ 4)= 8(小时)甲需丙帮助搬运(60- 6 8) 4= 3(小时)乙需丙帮助搬运5、仓库有一批货物,运走的货物与剩下的货物的质量比为 2:7.如果又运走 64 吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?解:第 1 次运走:2/(2+7)=2/9. 64/(1-2/9-3/5)=360 吨。 6、育才小学原来体育达标人数与未达标人数比是 3:5,后来又有 60 名同学达标,这时达标人数是未达标人数的 9/11,育才小学共有学生多少
5、人?原来达标人数占总人数的3(35)3/8现在达标人数占总人数的9/11(19/11)9/20育才小学共有学生60(9/203/8)800 人7、甲乙二人共同完成 242 个机器零件。甲做一个零件要 6 分钟,乙做一个零件要 5 分钟。完成这批零件时,两人各做了多少个零件?设甲做了 X 个,则乙做了(242-X)个6X=5(242-X)X=110242-110=132(个)8、爸爸、妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了 4 元,而三人行李共重 150 千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费 8 元,求每人可免费携
6、带行李的质量。设可免费携带的重量为 x kg,则:(150-3x)/4=(150-x)/8 /等式两边非免费部分单价相同;解方程:x=309、一队少先队员乘船过河,如果每船坐 15 人,还剩 9 人,如果每船坐 18 人,刚好剩余 1 只船,求有多少只船? 解法一:设船数为 X,则 (15X+9)/18=X-1 15X+9=18X-18 27=3X X=9 解法二:(15+90)(18-15)=8 只船 -每船坐 18 人时坐了 8 只船 8+1=9 只船10、建筑工地有两堆沙子,一堆比 2 堆多 85 吨,两堆沙子各用去 30 吨后,一堆剩的是 2 堆的 2 倍,两堆沙子原来各有多少吨? 设
7、 2 堆为 X 吨,则一堆为 X+85 吨X+85-30=2(X-30)x=115(2 堆)x+85=115+85=200(1 堆)11、甲乙两地相距 420 千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8 小时,已知在柏油路上行驶的速度是每小时 60 千米,而在泥土路上的行驶速度是每小时 40 千米.泥土路长多少千米? 两段路所用时间共 8 小时。柏油路时间:(420x)60泥土路时间: x407-(x60)+(x40)=8有 x120=1所以 x=12012、一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有
8、 55 只碗,你算算有多少人?设有 x 个人xx2x355x3013、学校购买 840 本图书分给高、中、低三个年级段,高年级段分的是低年级段的 2 倍,中年级段分的是低年级段的 3 倍少 120 本。三个年级段各分得多少本图书?设低年级段分得 x 本书,则高年级段分得 2x 本,中年级段分得(3x-120)本x+2x+3x-120=8406x-120=8406x=840+1206x=960x=960/6x=160高年级段为:160*2=320( 本) 中年级段为:160*3-120=360(本)14、学校田径组原来女生人数占 1/3,后来又有 6 名女生参加进来,这样女生就占田径组总人数的4
9、/9。现在田径组有女生多少人?解 设 原来田径队男女生一共 x 人1/3x+6= 4/9(x+6)x=301/3x+6=30*1/3+6=16女生 16 人15、小华有连环画本数是小明 6 倍如果两人各再买 2 本那么小华所有本数是小明 4 倍两人原来各有连环画多少本?解:设小华的有 x 本书 4(x+2)=6x+2 4x+8=6x+2 x=3 6x=18 16、甲乙两校共有 22 人参加竞赛,甲校参加人数的 5 分之 1 比乙校参加人数的 4 分之 1 少 1 人,甲乙两校各多少人参赛? 解:设甲校有 x 人参加,则乙校有(22-x)人参加。0.2 x=(22-x)0.25-10.2x=5.
10、5-0.25x-10.45x=4.5x=1022-10=12(人)17、在浓度为 40%的盐水中加入多多少千克水,浓度变为 30%,再加入多千克盐,浓度变为 50%?答案 1解:设原有盐水 x 千克,则有盐 40x 千克,所以根据关系列出方程: (40x)/(x1)30 得出 x3,再设须加入 y 千克盐,则有方程: (1.2y)/(4+y)=50%得出 y1.6 54 比 45 多 20,算法,设所求为 x,x(120)=54 算出结果 45 答案 2 解:设原有溶液为 x 千克,加入 y 千克盐后,浓度变为 50%由题意,得溶质为 40%x,则有40%x/(x+5)=30%解之得x=15
11、千克则溶质有 15*40%=6 千克由题意,得(6+y)/(15+5+y)=50%解之得y=8 千克故再加入 8 千克盐,浓度变为 50%18、某厂向银行申请甲乙两种贷款共 30 万,每年需支付利息 4 万元,甲种贷款年利率为 12%,乙种贷款年利率为 14%,该厂申请甲乙两种贷款金额各多少元?设:甲厂申请贷款金额 x 万元,则乙厂申请贷款金额(30-x)万元。 列式:x*0.12+(30-x)*0.14=4化简:4.2-0.02x=40.02x=0.2解得:x=10(万元)19、甲乙两个水管单独开,注满一池水,分别需要 20 小时,16 小时.丙水管单独开,排一池水要 10小时,若水池没水,
12、同时打开甲乙两水管,5 小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/169/80 表示甲乙的工作效率9/80545/80 表示 5 小时后进水量1-45/8035/80 表示还要的进水量35/80(9/80-1/10)35 表示还要 35 小时注满20、师徒俩人加工同样多的零件。当师傅完成了 1/2 时,徒弟完成了 120 个。当师傅完成了任务时,徒弟完成了 4/5 这批零件共有多少个?答案为 300 个120(4/52)300 个可以这样想:师傅第一次完成了 1/2,第二次也是 1/2,两次一共全部完工,那么徒弟第二次后共完成了 4/5,可以推算出第一次完成了 4/5
13、 的一半是 2/5,刚好是 120 个。21、一批树苗,如果分给男女生栽,平均每人栽 6 棵;如果单份给女生栽,平均每人栽 10 棵。单份给男生栽,平均每人栽几棵?答案是 15 棵算式:1(1/6-1/10)15 棵22鸡与兔共 100 只,鸡的腿数比兔的腿数少 28 条,问鸡与兔各有几只?23、一个六位数的末位数字是 2,如果把 2 移到首位,原数就是新数的 3 倍,求原数.答案为 85714解:设原六位数为 abcde2,则新六位数为 2abcde(字母上无法加横线,请将整个看成一个六位数)再设 abcde(五位数)为 x,则原六位数就是 10x+2,新六位数就是 200000+x根据题意
14、得, (200000+x)310x+2解得 x85714所以原数就是 857142答:原数为 85714224、 若把英语单词 hello 的字母写错了,则可能出现的错误共有 ( )A 119 种 B 36 种 C 59 种 D 48 种解:5 全排列 5*4*3*2*1=120有两个 l 所以 120/2=60原来有一种正确的所以 60-1=5925、狗跑 5 步的时间马跑 3 步,马跑 4 步的距离狗跑 7 步,现在狗已跑出 30 米,马开始追它。问:狗再跑多远,马可以追上它?解:根据“马跑 4 步的距离狗跑 7 步” ,可以设马每步长为 7x 米,则狗每步长为 4x 米。根据“狗跑 5
15、步的时间马跑 3 步” ,可知同一时间马跑 3*7x 米21x 米,则狗跑 5*4x20 米。可以得出马与狗的速度比是 21x:20x21:20根据“现在狗已跑出 30 米” ,可以知道狗与马相差的路程是 30 米,他们相差的份数是 21-201,现在求马的 21 份是多少路程,就是 30(21-20)21630 米26、甲乙辆车同时从 a b 两地相对开出,几小时后在距中点 40 千米处相遇,已知甲车行完全程要 8小时,乙车行完全程要 10 小时,求 a b 两地相距多少千米?27、在一个 600 米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔 12 分钟相遇一次,若两个人
16、速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4 分钟相遇一次,两人跑一圈各要多少分钟?答案为两人跑一圈各要 6 分钟和 12 分钟。解:60012=50,表示哥哥、弟弟的速度差6004=150,表示哥哥、弟弟的速度和(50+150)2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600100=6 分钟,表示跑的快者用的时间600/50=12 分钟,表示跑得慢者用的时间28、慢车车长 125 米,车速每秒行 17 米,快车车长 140 米,车速每秒行 22 米,慢车在前面行驶,快车从后面追上来,
17、那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?答案为 53 秒算式是(140+125)(22-17)=53 秒可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。29 一个人在铁道边,听见远处传来的火车汽笛声后,在经过 57 秒火车经过她前面,已知火车鸣笛时离他 1360 米,(轨道是直的),声音每秒传 340 米,求火车的速度(得出保留整数)算式:1360(1360340+57)22 米/秒关键理解:人在听到声音后 57 秒才车到,说明人听到声音时车已经从发声音的地方行出13603404 秒的路程。也就是 1360
18、 米一共用了 4+5761 秒。29、一船以同样速度往返于两地之间,它顺流需要 6 小时;逆流 8 小时。如果水流速度是每小时 2 千米,求两地间的距离?解:(1/6-1/8)21/48 表示水速的分率21/4896 千米表示总路程30、快车和慢车同时从甲乙两地相对开出,快车每小时行 33 千米,相遇是已行了全程的七分之四,已知慢车行完全程需要 8 小时,求甲乙两地的路程。解:相遇是已行了全程的七分之四表示甲乙的速度比是 4:3时间比为 3:4所以快车行全程的时间为 8/4*36 小时6*33198 千米工程问题1甲乙两个水管单独开,注满一池水,分别需要 20 小时,16 小时.丙水管单独开,
19、排一池水要 10小时,若水池没水,同时打开甲乙两水管,5 小时后,再打开排水管丙,问水池注满还是要多少小时? 解: 1/20+1/169/80 表示甲乙的工作效率 9/80545/80 表示 5 小时后进水量 1-45/8035/80 表示还要的进水量 35/80(9/80-1/10)35 表示还要 35 小时注满 答:5 小时后还要 35 小时就能将水池注满。 2修一条水渠,单独修,甲队需要 20 天完成,乙队需要 30 天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划 16 天修完这条水渠,且要求两队
20、合作的天数尽可能少,那么两队要合作几天? 解:由题意得,甲的工效为 1/20,乙的工效为 1/30,甲乙的合作工效为1/20*4/5+1/30*9/107/100,可知甲乙合作工效甲的工效乙的工效。 又因为,要求“两队合作的天数尽可能少” ,所以应该让做的快的甲多做,16 天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少” 。 设合作时间为 x 天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x1 x10 答:甲乙最短合作 10 天 3一件工作,甲、乙合做需 4 小时完成,乙、丙合做需 5 小时完成。现在先请甲、丙合做 2 小时后,余下的乙还需做
21、 6 小时完成。乙单独做完这件工作要多少小时? 解: 由题意知,1/4 表示甲乙合作 1 小时的工作量,1/5 表示乙丙合作 1 小时的工作量 (1/4+1/5)29/10 表示甲做了 2 小时、乙做了 4 小时、丙做了 2 小时的工作量。 根据“甲、丙合做 2 小时后,余下的乙还需做 6 小时完成”可知甲做 2 小时、乙做 6 小时、丙做 2小时一共的工作量为 1。 所以 19/101/10 表示乙做 6-42 小时的工作量。 1/1021/20 表示乙的工作效率。 11/2020 小时表示乙单独完成需要 20 小时。 答:乙单独完成需要 20 小时。 4一项工程,第一天甲做,第二天乙做,第
22、三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需 17 天完成,甲单独做这项工程要多少天完成? 解:由题意可知 1/甲+1/乙+1/甲+1/乙+1/甲1 1/乙+1/甲+1/乙+1/甲+1/乙+1/甲0.51 (1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多 0.5 天) 1/甲1/乙+1/甲0.5(因为前面的工作量都相等) 得到 1/甲1/乙2 又因为 1/乙1/17 所以 1/甲2/17,甲等于 1728.5
23、 天 5师徒俩人加工同样多的零件。当师傅完成了 1/2 时,徒弟完成了 120 个。当师傅完成了任务时,徒弟完成了 4/5 这批零件共有多少个? 答案为 300 个 120(4/52)300 个 可以这样想:师傅第一次完成了 1/2,第二次也是 1/2,两次一共全部完工,那么徒弟第二次后共完成了 4/5,可以推算出第一次完成了 4/5 的一半是 2/5,刚好是 120 个。 6一批树苗,如果分给男女生栽,平均每人栽 6 棵;如果单份给女生栽,平均每人栽 10 棵。单份给男生栽,平均每人栽几棵? 答案是 15 棵 算式:1(1/6-1/10)15 棵 7一个池上装有 3 根水管。甲管为进水管,乙
24、管为出水管,20 分钟可将满池水放完,丙管也是出水管,30 分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了 18 分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 答案 45 分钟。 1(1/20+1/30)12 表示乙丙合作将满池水放完需要的分钟数。 1/12*(18-12)1/12*61/2 表示乙丙合作将漫池水放完后,还多放了 6 分钟的水,也就是甲 18分钟进的水。 1/2181/36 表示甲每分钟进水 最后就是 1(1/20-1/36)45 分钟。 8某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期
25、三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天? 答案为 6 天 解: 由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成, ”可知: 乙做 3 天的工作量甲 2 天的工作量 即:甲乙的工作效率比是 3:2 甲、乙分别做全部的的工作时间比是 2:3 时间比的差是 1 份 实际时间的差是 3 天 所以 3(3-2)26 天,就是甲的时间,也就是规定日期 方程方法: 1/x+1/(x+2)2+1/(x+2)(x-2)1 解得 x6 9两根同样长的蜡烛,点完一根粗蜡烛要 2 小时,而点完一根细蜡烛要 1 小时,一天晚上停电,小芳同时
26、点燃了这两根蜡烛看书,若干分钟后来电了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的 2 倍,问:停电多少分钟? 答案为 40 分钟。 解:设停电了 x 分钟 根据题意列方程 1-1/120*x(1-1/60*x)*2 解得 x40 二鸡兔同笼问题 1鸡与兔共 100 只,鸡的腿数比兔的腿数少 28 条,问鸡与兔各有几只? 解: 4*100400,400-0400 假设都是兔子,一共有 400 只兔子的脚,那么鸡的脚为 0 只,鸡的脚比兔子的脚少 400 只。 400-28372 实际鸡的脚数比兔子的脚数只少 28 只,相差 372 只,这是为什么? 4+26 这是因为只要将一只兔子换成一
27、只鸡,兔子的总脚数就会减少 4 只(从 400 只变为 396 只) ,鸡的总脚数就会增加 2 只(从 0 只到 2 只) ,它们的相差数就会少 4+26 只(也就是原来的相差数是 400-0400,现在的相差数为 396-2394,相差数少了 400-3946) 372662 表示鸡的只数,也就是说因为假设中的 100 只兔子中有 62 只改为了鸡,所以脚的相差数从 400 改为 28,一共改了 372 只 100-6238 表示兔的只数 三数字数位问题 1一个两位数,在它的前面写上 3,所组成的三位数比原两位数的 7 倍多 24,求原来的两位数. 答案为 24 解:设该两位数为 a,则该三
28、位数为 300+a 7a+24300+a a24 答:该两位数为 24。 2一个六位数的末位数字是 2,如果把 2 移到首位,原数就是新数的 3 倍,求原数. 答案为 85714 解:设原六位数为 abcde2,则新六位数为 2abcde(字母上无法加横线,请将整个看成一个六位数) 再设 abcde(五位数)为 x,则原六位数就是 10x+2,新六位数就是 200000+x 根据题意得, (200000+x)310x+2 解得 x85714 所以原数就是 857142 答:原数为 857142 四排列组合问题 1若把英语单词 hello 的字母写错了,则可能出现的错误共有 ( ) A 119
29、种 B 36 种 C 59 种 D 48 种 解: 5 全排列 5*4*3*2*1=120 有两个 l 所以 120/2=60 原来有一种正确的所以 60-1=59 五路程问题 1在一个 600 米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔 12 分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4 分钟相遇一次,两人跑一圈各要多少分钟? 答案为两人跑一圈各要 6 分钟和 12 分钟。 解: 60012=50,表示哥哥、弟弟的速度差 6004=150,表示哥哥、弟弟的速度和 (50+150)2=100,表示较快的速度,方法是求和差问
30、题中的较大数 (150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数 600100=6 分钟,表示跑的快者用的时间 600/50=12 分钟,表示跑得慢者用的时间 2慢车车长 125 米,车速每秒行 17 米,快车车长 140 米,车速每秒行 22 米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间? 答案为 53 秒 算式是(140+125)(22-17)=53 秒 可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。 3在 300 米长的环形跑道上,甲乙两个人同时同
31、向并排起跑,甲平均速度是每秒 5 米,乙平均速度是每秒 4.4 米,两人起跑后的第一次相遇在起跑线前几米? 答案为 100 米 300(5-4.4)500 秒,表示追及时间 55002500 米,表示甲追到乙时所行的路程 25003008 圈100 米,表示甲追及总路程为 8 圈还多 100 米,就是在原来起跑线的前方 100米处相遇。 4一个人在铁道边,听见远处传来的火车汽笛声后,在经过 57 秒火车经过她前面,已知火车鸣笛时离他 1360 米,(轨道是直的),声音每秒传 340 米,求火车的速度(得出保留整数) 答案为 22 米/秒 算式:1360(1360340+57)22 米/秒 关键
32、理解:人在听到声音后 57 秒才车到,说明人听到声音时车已经从发声音的地方行出13603404 秒的路程。也就是 1360 米一共用了 4+5761 秒。 5AB 两地,甲乙两人骑自行车行完全程所用时间的比是 4:5,如果甲乙二人分别同时从 AB 两地相对行使,40 分钟后两人相遇,相遇后各自继续前行,这样,乙到达 A 地比甲到达 B 地要晚多少分钟? 答案:18 分钟 解:设全程为 1,甲的速度为 x 乙的速度为 y 列式 40x+40y=1 x:y=5:4 得 x=1/72 y=1/90 走完全程甲需 72 分钟,乙需 90 分钟 故得解 6甲乙两车同时从 AB 两地相对开出。第一次相遇后
33、两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离 B 地的距离是 AB 全程的 1/5。已知甲车在第一次相遇时行了 120 千米。AB 两地相距多少千米? 答案是 300 千米。 解:通过画线段图可知,两个人第一次相遇时一共行了 1 个 AB 的路程,从开始到第二次相遇,一共又行了 3 个 AB 的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3 倍。即甲共走的路程是 120*3360 千米,从线段图可以看出,甲一共走了全程的(1+1/5) 。 因此 360(1+1/5)300 千米 从 A 地到 B 地,甲、乙两人骑自行车分别需要 4 小时、6 小时,现在
34、甲乙分别 AB 两地同时出发相向而行,相遇时距 AB 两地中点 2 千米。如果二人分别至 B 地,A 地后都立即折回。第二次相遇点第一次相遇点之间有()千米 7一船以同样速度往返于两地之间,它顺流需要 6 小时;逆流 8 小时。如果水流速度是每小时 2 千米,求两地间的距离? 解:(1/6-1/8)21/48 表示水速的分率 21/4896 千米表示总路程 8快车和慢车同时从甲乙两地相对开出,快车每小时行 33 千米,相遇是已行了全程的七分之四,已知慢车行完全程需要 8 小时,求甲乙两地的路程。 解: 相遇是已行了全程的七分之四表示甲乙的速度比是 4:3 时间比为 3:4 所以快车行全程的时间
35、为 8/4*36 小时 6*33198 千米 9小华从甲地到乙地,3 分之 1 骑车,3 分之 2 乘车;从乙地返回甲地,5 分之 3 骑车,5 分之 2 乘车,结果慢了半小时.已知,骑车每小时 12 千米,乘车每小时 30 千米,问:甲乙两地相距多少千米? 解: 把路程看成 1,得到时间系数 去时时间系数:1/312+2/330 返回时间系数:3/512+2/530 两者之差:(3/512+2/530)-(1/312+2/330)=1/75 相当于 1/2 小时 去时时间:1/2(1/312)1/75 和 1/2(2/330)1/75 路程:121/2(1/312)1/75+301/2(2/
36、330)1/75=37.5(千米) 八比例问题 1甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下 10 元,甲、乙怎么分?答案:甲收 8 元,乙收 2 元。 解: “三人将五条鱼平分,客人拿出 10 元” ,可以理解为五条鱼总价值为 30 元,那么每条鱼价值 6 元。 又因为“甲钓了三条” ,相当于甲吃之前已经出资 3*618 元, “乙钓了两条” ,相当于乙吃之前已经出资 2*612 元。 而甲乙两人吃了的价值都是 10 元,所以 甲还可以收回 18-108 元 乙还可以收回 12-102 元 刚好就是客人出的
37、钱。 2一种商品,今年的成本比去年增加了 10 分之 1,但仍保持原售价,因此,每份利润下降了 5 分之 2,那么,今年这种商品的成本占售价的几分之几? 答案 22/25 最好画线段图思考: 把去年原来成本看成 20 份,利润看成 5 份,则今年的成本提高 1/10,就是 22 份,利润下降了2/5,今年的利润只有 3 份。增加的成本 2 份刚好是下降利润的 2 份。售价都是 25 份。 所以,今年的成本占售价的 22/25。 3甲乙两车分别从 A.B 两地出发,相向而行,出发时,甲.乙的速度比是 5:4,相遇后,甲的速度减少 20%,乙的速度增加 20%,这样,当甲到达 B 地时,乙离 A
38、地还有 10 千米,那么 A.B 两地相距多少千米? 解: 原来甲.乙的速度比是 5:4 现在的甲:5(1-20)4 现在的乙:4(1+20)4.8 甲到 B 后,乙离 A 还有:5-4.80.2 总路程:100.2(4+5)450 千米 4一个圆柱的底面周长减少 25%,要使体积增加 1/3,现在的高和原来的高度比是多少? 答案为 64:27 解:根据“周长减少 25” ,可知周长是原来的 3/4,那么半径也是原来的 3/4,则面积是原来的9/16。 根据“体积增加 1/3”,可知体积是原来的 4/3。 体积底面积高 现在的高是 4/39/1664/27,也就是说现在的高是原来的高的 64/
39、27 或者现在的高:原来的高64/27:164:27 5某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共 30 吨香蕉、橘子和梨共 45 吨。橘子正好占总数的 13 分之 2。一共运来水果多少吨? 答案为 65 吨 橘子+苹果30 吨 香蕉+橘子+梨45 吨 所以橘子+苹果+香蕉+橘子+梨75 吨 橘子(香蕉+苹果+橘子+梨)2/13 说明:橘子是 2 份,香蕉+苹果+橘子+梨是 13 份 橘子+香蕉+苹果+橘子+梨一共是 2+1315 份75/15=5 吨 5*15=65 吨慧心六升初应用题专项练习(二)答案1、想:由已知条件可知,一张桌子比一把椅子多的 288 元,正好是一把椅子价钱
40、的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。 解:一把椅子的价钱: 288(10-1)=32(元) 一张桌子的价钱: 3210=320(元) 答:一张桌子 320 元,一把椅子 32 元。 2、想:根据只把底增加 8 米,面积就增加 40 平方米, 可求出原来平行四边形的高。根据只把高增加 5 米,面积就增加 40 平方米,可求出原来平行四边形的底。再用原来的底乘以原来的高就是要求的面积。 解:(405)(408)=40(平方米) 答:平行四边形地原来的面积是 40 平方米。3、想:根据在距离中点 4 千米处相遇和甲比乙速度快,可知甲比乙多走 42 千
41、米,又知经过 4 小时相遇。即可求甲比乙每小时快多少千米。 解:424 =84 =2(千米) 答:甲每小时比乙快 2 千米。 4、想:根据两人付同样多的钱买同一种铅笔和李军要了 13 支,张强要了 7 支,可知每人应该得(13+7)2 支,而李军要了 13 支比应得的多了 3 支,因此又给张强 0.6 元钱,即可求每支铅笔的价钱。 解:0.613-(13+7)2 =0.613-202 =0.63 =0.2(元) 答:每支铅笔 0.2 元。 5、想:根据已知两车上午 8 时从两站出发,下午 2 点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。 解:下午 2
42、点是 14 时。 往返用的时间:14-8=6(时) 两地间路程:(40+45)62 =8562 =255(千米) 答:两地相距 255 千米。 6、想:第一小组停下来参观果园时间,第二小组多行了3.5-(4.5-3.5) 千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。 解:第一组追赶第二组的路程: 3.5-(4.5- 3.5)=3.5-1=2.5(千米) 第一组追赶第二组所用时间: 2.5(4.5-3.5)=2.51=2.5(小时) 答:第一组 2.5 小时能追上第二小组。 7、想:根据甲仓的存粮吨数比乙仓的 4 倍少 5 吨,可知
43、甲仓的存粮如果增加 5 吨,它的存粮吨数就是乙仓的 4 倍,那样总存粮数也要增加 5 吨。若把乙仓存粮吨数看作 1 倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。 解:乙仓存粮: (32.52+5)(4+1) =(65+5)5 =705 =14(吨) 甲仓存粮: 144-5 =56-5 =51(吨) 答:甲仓存粮 51 吨,乙仓存粮 14 吨。 8、想:根据甲队每天比乙队多修 10 米,可以这样考虑:如果把甲队修的 4 天看作和乙队 4 天修的同样多,那么总长度就减少 4 个 10 米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数
44、。 解:乙每天修的米数: (400-104)(4+5) =(400-40)9 =3609 =40(米) 甲乙两队每天共修的米数: 402+10=80+10=90(米) 答:两队每天修 90 米。 9、想:已知每张桌子比每把椅子贵 30 元,如果桌子的单价与椅子同样多,那么总价就应减少306 元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。 解:每把椅子的价钱: (455-306)(6+5) =(455- 180)11 =27511 =25(元) 每张桌子的价钱: 25+30=55(元) 答:每张桌子 55 元,每把椅子 25 元。 10、想:根据已知的两
45、车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。 解:(7+65)40(75- 65) =1404010 =1404 =560(千米) 答:甲乙两地相距 560 千米。 11、想:根据已知托运玻璃 250 箱,每箱运费 20 元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿 100 元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。 解:(20250-4400)(10+20) =600120 =5(箱) 答:损坏了 5 箱。 12、想:因第一中队早出发 2 小时比第二中队先行 42 千米,
46、而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。 解:42(12-4) =428 =1(时) 答:第二中队 1 小时能追上第一中队。 13、想:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。 解:原计划烧煤天数: (1500+1000)(1500-1000) =2500500 =5(天) 这堆煤的重量: 1500(5-1) =15004 =6000(千克) 答:这堆煤有 6000 千克。 14、想:小红打算买的铅笔和本子总数与实际买的铅笔和本子
47、总数量是相等的,找回 0.45 元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差 0.45 元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉 8 个练习本比 8 支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。 解:每本练习本比每支铅笔贵的钱数: 0.45(8-5)=0.453=0.15(元) 8 个练习本比 8 支铅笔贵的钱数: 0.158=1.2(元) 每支铅笔的价钱: (3.8-1.2)(5+8)=2.613=0.2(元) 也可以用方程解: 设一枝铅笔 X 元,则一本练习本为元。 8X+5=3.8-0.45 64X+19-25X=30.4-3.6
48、 39X=7.8 X=0.2 答:每支铅笔 0.2 元。 15、想:根据一辆客车比一辆卡车多载 10 人,可求 6 辆客车比 6 辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。 解:卡车的数量: 360106(8-6) =3601062 =36030 =12(辆) 客车的数量: 360106(8-6)+10 =36030+10 =36040 =9(辆) 答:可用卡车 12 辆,客车 9 辆。 16、想:根据计划每天修 720 米,这样实际提前的长度是(7203-1200)米。根据每天多修 80 米可求已修的天数,进而求公路的全长。 解:已修的天数: (7203-1200)80 =96080 =12(天) 公路全长: (720+80)12+1200 =80012+1200 =9600+1200 =10800(米) 答:这条公路全长 10800 米。 17、想:根据已知条件,可求 12 个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。 解:12 个纸箱相当木箱的个数: 2(123)=248(个) 一个木箱装鞋的双