收藏 分享(赏)

函数的图像教案1.doc

上传人:精品资料 文档编号:10380164 上传时间:2019-11-05 格式:DOC 页数:6 大小:533KB
下载 相关 举报
函数的图像教案1.doc_第1页
第1页 / 共6页
函数的图像教案1.doc_第2页
第2页 / 共6页
函数的图像教案1.doc_第3页
第3页 / 共6页
函数的图像教案1.doc_第4页
第4页 / 共6页
函数的图像教案1.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、114.1.3 函数的图象嵩阳镇一中 顾承坤教学目标 (一)知识教学点:1会用描点法根据解析式或表格画出函数的图象 2会由函数的图象获取函数的性质。(二)能力训练点:1在选择恰当数值进行列表的教学中,培养学生分析问题和解决问题的能力;2在描点画图的过程中培养学生的动手能力;3通过函数图象的教学,向学生渗透数形结合的思想方法 (三)德育渗透点:通过函数图象的教学,使学生体会事物是互相联系的和有规律地变化着的 教学重点、难点和疑点 1教学重点:会用描点法画出函数的图象,由函数的图象获取函数的性质 2教学难点:由函数的图象获取函数的性质 教学步骤 :(一)复习提问,引入新课,明确目标, 提问:1上节

2、课我们学习了一种表示函数的方法,是什么?什么是函数?什么是变量?什么是常量? 2它是不是唯一的表示函数的方法呢? (再通过一个销售问题的实例来进行复习引入。出示幻灯片)出售一种豆子,每千克 2 元,写出豆子的总金额 y(元)与所售豆子的数量 x(千克 )之间的函数关系式,并指出自变量的取值范围。解析法:y=2x 看一看,咱们还可以把上式列出表格列表法:数量(千克 ) 1 23 4 5 6 7金额(元 ) 2 46 8 10 12 142解析法:y=2x(x0) 如果想直观地了解售出的金额与数量之间的关系,你有什么办法吗?(1,2) (2,4) (3,6) (4,8) (5,10) (6,12)

3、 (7,14)自变量与函数的每对对应值就是一些有序数对。你有什么想法?如果把自变量与函数的每对对应值分别作为点的横、纵坐标,在平面直角坐标系中描出这些点,会有什么结果呢?(咱们还可以用画图像的方法来表示函数)有些问题中的函数关系很难列式子表示,但是可以用图来直观地反映,例如用心电图表示心脏生物电流与时间的关系.即使对于能列式表示的函数关系,如也能画图表示则会使函数关系更清晰. 这节课我们就来学习函数的图象表示方法 (板书课题) (二)整体感知 看实例:正方形的边长 x 与面积 S 的函数关系为: S=X (X0), 其中自变量的取值范围是_.我们还可以利用在坐标系中画2图的方法来表示 S 与的

4、关系 . 计算并填写下表: X 0 0.5 1 1.5 2 2.5 3 3.5 4S上面,通过列表给出与 S 的对应值,也可以表示 S 与的函数关系,这种表示函数的方法叫做列表法 提问:1看上表,给出的实际是一列实数对,如果规定把自变量的值写在前面,函数 S 的值写在后面,我们就得到一列什么样的实数对? (二)整体感知 ,新课学习。1、看实例:正方形的边长 x 与面积 S 的函数关系为: S=X 其中自变量的取值范围是_X0_.我们还可以利用在坐标系中画图的方法2来表示 S 与 x 的关系. ( 出示幻灯片) 想一想,有序实数对与什么有关?有什么样的关系? 3通过这两个问题,可使学生很自然地把

5、上面的列表与坐标平面联系起来,就可以顺利引出函数与坐标平面内的图形的联系 能否把上表中给出的有序实数对在坐标平面内描出相应的点? (板演画图,归纳总结) 一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 如图的曲线即函数 S=X (X0)的图象. 22、归纳:表示函数关系的方法:、解析法:准确地反映了函数与自变量之间的数量关系。、列表法:具体地反映了自变量与函数的数值对应关系。、图象法:直观地反映了函数随自变量的变化而变化的规律。3、老师演示,学生观察:函数 y= 的图像。x4通过例题归纳由函数解析式画图象,一般

6、按下列步骤进行: (1) 列表:列表给出自变量与函数的一些对应值; (2) 描点:以表中对应值为坐标,在坐标平面内描出相应的点; (3) 连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连结起来 4、练习:作出函数 y=2x+1 的图象5、例题精讲,图像的运用:、观察:如图是自动测温仪记录的图象 ,它反映了北京的春季某天气温 T 如何随时间 t 的变化而变化.你从图象中得到了哪些信息?(图见 P.11 图 11.1-4) 学生讲论,全班交流,归纳总结 、例 2 下面的图象反映的过程是:小明从家去菜地浇水,又去玉米地锄草,然后回家.其中 表示时间,y 表示小明离他家的距离. 根据图象回答下

7、列问题:(图见课本 P.12 图 11.1-5) (1) 菜地离小明家多远 ? 小明走到菜地用了多少时间? (2) 小明给菜地浇水用了多少时间? (3) 菜地离玉米地多远 ? 小明从菜地到玉米地用了多少时间? (4) 小明给玉米地锄草用了多少时间? 4(5) 玉米地离小明家多远 ?小明从玉米地走回家的平均速度是多少? (三)拓展练习:1、某厂今年前五个月生产某种产品的月产量 Q(件)关于时间 t (月)的函数图象如图所示,则对这种产品来说,下列说法正确的是( ).A、1 月至 3 月每月产量逐月增加,4、5 两月每月产量逐月减少 B、1 月至 3 月每月产量逐月增加,4、5 两月每月产量与 3

8、 月持平C、1 月至 3 月每月产量逐月增加,4、5 两个月停止生产 D、1 月至 3 月每月产量不变,4、5 两月停止生产2、三峡工程去年在6 月 1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间。假使水库水位匀速上升,那么下列图象中,能正确反映这10天水位 h(米)随时间t(天)变化的是( )t(天)h(米)ht(天)h(米)oo1061351010613510106t(天)h(米)o135(A) (B)o t(天)10613510(米)(C) (D)103.小明从家里出发,外散步,到一个公共阅报栏前5看了一会报后,继续散步了一段时间,然后回家.下面的图描述了

9、小明在散步过程中离家的距离 s(米)与散步所用时间 t(分)之间的函数关系.请你由图具体说明小明散步的情况.4、如图是一种古代的计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间。用x 表示时间,y 表示壶底到水面的高度,下面的哪个图像适合表示一小段时间内y 与 x 的函数关系(暂时不考虑水量变化时对压力的影响)?(出示幻灯片)5、2一枝蜡烛长 20 厘米,点燃后每小时燃烧掉 5 厘米,则下列 3 幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度 h(厘米)与点燃时间 t 之间的函数关系的是( ).2(四) 、课堂小结,提高认识:1、回忆一下,本节课你学会了什么?(一般来说,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。 )2.画函数图象的方法:描点法(1)列表(2)描点(3)连线(平滑)3、函数的表示方法:解析法,列表法,图像法。4、画函数图象的步骤从函数图象获取信息的步骤:、画出函数的图象。、观察图象,发现数量关系及其变化规律。(五) 、布置作业 :1、课本 107 页第 7 题。 2、 画出函数 的图321xy象。6.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报