1、 2 3 2013 M 5 % ? S / Energy Storage Science and Technology Vol.2 No.3May 2013EV$ S5 IIIMmMM r g= S S 100190 K 1 MM $15b MM M !V8F !91 p “S b MM V P Hq MM?Z bMFsM M t VMme 4 Z U bl 0M1MMMmb 1oM 0 MM Mm doi 10.3969/j.issn.2095-4239.2013.03.010 ms | O 646.21 DS A cI| 2095-42392013 03-250-17 Fundamenta
2、l scientific aspects of lithium batteries (III) iPhase transition and phase diagram GAO Jian LV Yingchun LI Hong Institute of Physics Chinese Academy of Sciences Beijing 100190 China Abstract: Phase transition is an essential problem in battery research. Understanding on phase transition in synthesi
3、s precisely is necessary to obtain target products with controlled structure and composition. Knowledge about phase transitions of electrolyte can offer the information of the safe and stable working condition, and provide a way to develop new electrolyte according to the characteristics of phase tr
4、ansition. Phase composition and phase evolution can be illustrated concisely and directly in phase diagram. This paper summarizes briefly typical research activities on phase transition and phase diagram in Li-ion batteries during material preparation. Key words ion batteries phase transition phase
5、diagram 1 1 M “d ( B bW uBM1-2b a| qaH 3 Hq/! HMM#M 3 LC V e!$b V a aaH ZE “SMMYV MV b a a8a qaHaM MMSbMF K1 bBt !V1FaHaaa ryN1 I n b/YV+ 8 0e !MM+b 2.2.1 E#%ME! LiAlO2LiAlO2 F K ? YT molten carbonate fuel cellsMCFC b ! B , 9$ T 0 9 4b -LiAlO2;$T%8 BM 0 q 400 H l 108 S/cm Si 400 q V4 104S/cm 10b-LiA
6、lO2 LiCoO2a afirst order phase transitions bsecond order phase transitions m 1 :B B)MM MM Fig. 1 First order phase transitions 35-364 _o YT 0 8 3 | 0a = ( J ) LiTFSILiN(CF3SO2)2a= ( Y ) LiBETILiN(C2F5SO2)2a J LiCF3SO3YF i/ ?i ?T 1s 8“ LiTFSI/Y14 67 LiBETIY8“ V 57 b i V37?C|B LiBOBYF i = ( J ) LiTFSI
7、Y *“ i 7 50 PbN8“ / %87 5i A8 / qMv B+ N VMMb m 11 m 12 V A LiBOB/ CH3CONH2 :1 116 14 H Arrhenius wLs | qi“ S = ?M 7LiBOB/ CH3CONH2 :1 18 16 HArrhenius wL5s b Arrhenius wLsf 9VBZ L LiBOB/ CH3CONH2=Mm f :1 116 14 H8“V V% %A iA8V Arrhenius wL8C M/ ? 7 :1 18 16 HMm V A8“ V% A M Arrhenius wLBS = ?b %M u
8、 LiBOB/ CH3CONH28“ V 0 . % 0. 0 %M1%8 0M u =YV b W# bAM u BA8bA8 R$ s 0B NV ArrheniusZ 0VB K 6B 0 q 0K ? %bVm 13 A LiBOB/ CH3CONH28“NV Arrhenius ZA8 z 0 q ?bLiBOB/ CH3CONH2:1 116 148“ iB%A i bB /%Ms AM 0 ; VVAM. 9 VV%M. V“%M. K8C B (rTbyN%Mi 0 q11AM1%M 0 qb m 11 LiBOB/ CH3CONH28“Mm Fig. 11 Phase dia
9、gram of LiBOB/ CH3CONH2 electrolyte m 12 LiBOBY :1 0 qArrhenius1“m37Fig. 12 Conductivities of LiBOB/ CH3CONH2 electrolytes37 r$ S5IIIiiMmMM M 257 3 Vm 13 m 14 V A i 25 H %8N H q =Ev / ?T 6 40 i 12 h q 4 r ? PT q 6 60 i 12 hX M i A8 q9 v4 ? T1 pN H VT 40 i 12 hN HV V AN/ i *)V 7N H q VT M1 60 HN H v
10、K 25 i 12 hM %8N H ?Tb m 13 LiBOB/CH3CONH2:1 18Li/LiFePO4/ Mv 37Fig. 13 Photographs of the Li/LiFePO4cell with LiBOB/CH3CONH2(18) electrolyte at different temperatures37 NB+T 5F !X V| 0% ?/%i ? 1b q 6 PrMM N H ?Tb 2.3.2 38 |_A8 m 14 LiBOB/CH3CONH2:1 18Li/LiFePO4/ b wL m_ phV V_/phVbV3 RVV a25 6 b40
11、6 c60 d40 e25 37Fig. 14 Charging/discharging records of the Li/LiFePO4cell with LiBOB/CH3CONH2(1:8) electrolyte at different temperatures (a) 25 (Temp. rising); (b) 40 (Temp. rising); (c) 60 ; (d) 40 (Temp. dropping) (e) 25 (Temp. dropping)37“% s0 |_5% 8 7_A8 5 A8 =“ |_A |_7_A8b= fV%88M 8%MMtemperat
12、ure of transition Tt7V 8MA melting temperatureTmb 8 Timmermanns 1935 M n5?C 1 8s0?5 8+ 8G X Lm 40b H VM1 i |_bNV% MA M ( l . . M p#Mm M. Beijing Higher Education Press 1995. 2 Grey C P Dupr N. NMR studies of cathode materials for lithium-ion rechargeable batteriesJ. Chem. Rev. 2004 104 104493-4512.
13、3 Sugiyama J Mukai K Nozaki H et al. Antiferromagnetic spin structure and lithium ion diffusion in Li2MnO3probed by +SRJ. Phys. Rev. B 2013 87 2. doi 10.1103/PhysRevB.87.024409. 4 Yao J Konstantinov K Wang G X et al. Electrochemical and magnetic characterization of LiFePO4and Li0.95Mg0.05FePO4cathod
14、e materialsJ. J. Solid State Electr. 2007 11 2 177-185. 5 Ramzan M Ahuja R. Ferromagnetism in the potential cathode material LiNaFePO4FJ. Europhys. Lett.200987 1. doi.10.1209/ 0295-5075/87/18001. 6 Li G H Ikuta H Uchida T et al. The spinel phases LiMyMn2-yO4 M=Co,Cr,Nias the cathode for rechargeable
15、 lithium batteriesJ. J. Electrochem. Soc. 1996 143 1 178-182. 7 Ivancevic V GIvancevic T T. Complex NonlinearityChaosPhase Transitions Topology Change and Path Integrals (Understanding Complex Systems)M. Berlin Springer -Verlag Berlin 2008. 8 Yu Lu Hao Bolin y . MM “C M. BeijingScience Press 1984. 9
16、 Cheng Xiaonong k j Dai Qixun z Shao Honghong . % MM M. Beijing Chemical Industry Press 2006. 10 Shimura T Murahashi D Iwahara H Yogo T. Lithium ionic conduction in LiAlO2-based oxides at elevated temperaturesC/ Proceedings of the 8th Asian Conference Singapore World Scientific Publishing Co. Pte. L
17、td. 2002 613-620. 11 Ceder GChiang Y MSadoway D Ret al. Identification of cathode materials for lithium batteries guided by first-principles calculationsJ. Nature 1998 392 6677 694-696. 12 Zhang Jin f Cao Gaoshao Zhao Xinbing ua et al. Electrochemical properties of -LiAlO2 coated LiNi0.4Co0.2Mn0.4O2
18、by solid reactionJ. Chinese Journal of Inorganic Chemistry 2008 24 3 94-100. 13 Sun Y C Wang Z X Chen L Q et al. Improved electrochemical performances of surface-modified spinel LiMn2O4for long cycle life lithium-ion batteriesJ. J. Electrochem. Soc. 2003 150 10A1294-A1298. 14 Cao H Xia B J Zhang Y e
19、t al. LiAlO2-coated LiCoO2as cathode material for lithium ion batteriesJ. Solid State Ionics 2005 176 9-10 911-914. 15 Kim Y Kim H S Martin S W. Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2cathode materials for lithium ion batteriesJ. Electrochem. Acta. 2006 52 3
20、 1316-1322. 16 Kim H S Kim Y Kim S I et al. Enhanced electrochemical properties of LiNi1/3Co1/3Mn1/3O2cathode material by coating with LiAlO2nanoparticlesJ. J. Power Sources2006161 1623-627. 17 Lei L He D W Zou Y T et al. Phase transitions of LiAlO2at high pressure and high temperatureJ. J. Solid St
21、ate Chem. 2008 181 8 1810-1815. 18 Marezio M Remeika J P. High-pressure synthesis and crystal structure of Alpha-LiAlO2J. J. Chem. Phys. 1966 44 83143-3144. 19 Li X J Kobayashi T Zhang F X et al. A new high-pressure phase of LiAlO2J. J. Solid State Chem. 2004 177 6 1939-1943. 20 Marezio M Remeika J
22、P. Polymorphism of LiMO2compounds and high-pressure single-crystal synthesis of LiBO2J. J. Chem. Phys.1966 44 9 3348-3353. 21 Chang C H Margrave J L. High-pressure-high-temperature syntheses.3. Direct syntheses of new high-pressure forms of LiAlO2and LiGaO2and polymorphism in LiMO2compounds (M=B, Al
23、, Ga)J. J. Am. Chem. Soc. 1968 90 8 2020-2022. 22 Danek V Tarniowy M Suski L. Kinetics of the alpha gamma phase transformation in LiAlO2under various atmospheres within the 1073-1173 K temperatures rangeJ. J. Mater. Sci. 2004 39 72429-2435. 23 Rasneur B Charpin J. Chemical-properties of lithium cera
24、mics - reactivity with water and water-vaporJ. J. Nucl. Mater.1988155461-465. 24 Finn P A. Effects of different environments on the thermal-stability of powdered samples of LiAlO2J. J. Electrochem. Soc. 1980 127 1 236-238. 25 Tomimatsu N Ohzu H Akasaka Y et al. Phase stability of LiAlO2in molten car
25、bonateJ. J. Electrochem. Soc. 1997 144 124182-4186. 26 Ribeiro R A Silva G G Mohallem N D S. The influences of heat treatment on the structural properties of lithium aluminates J. J. Phys. Chem. Solids 2001 62 5 857-864. 27 Byker H JEliezer IEllezer Net al. Calculation of a phase-diagram for the LiO
26、0.5-AlO1.5systemJ. J. Phys. Chem-Us 1979 83 182349-2355. 28 Isupov V P Eremina N V. Effect of mechanical activation of Al(OH)3on its reaction with Li2CO3J. Inorg. Mater.201248 9918-924. 29 Luo C Martin M. Stability and defect structure of spinels Li1+ xMn2x O4I. In situ investigations on the stabili
27、ty field of the spinel phaseJ. J. Mater. Sci. 2007 42 6 1955-1964. 30 Kelder EJak MSchoonman Jet al. Quality control of Li1+ Mn2-O4 spinels with their impurity phases by Jaeger and Vetter titrationJ. J. Power Sources 1997 68 2 590-592. 31 Thackeray M Mansuetto M Dees D et al. The thermal stability o
28、f lithium-manganese-oxide spinel phasesJ. Materials Research r$ S5IIIiiMmMM M 265 3 Bulletin 1996 31 2 133-1340. 32 Boulineau A Croguennec L Delmas C et al. Thermal stability of Li2MnO3From localized defects to the spinel phaseJ. Dalton Transactions 2012 41 5 1574-1581. 33 . New electrolytes for Li-
29、ion batteries D. Beijing Institute of physics Chinese Academy of Sciences 2008. 34 Liang H Y Li H Wang Z X et al. New binary room-temperature molten salt electrolyte based on urea and LiTFSIJ. J. Phys. Chem. B 2001 105 41 9966-9969. 35 Hu Y S Wang Z X Huang X J et al. Physical and electrochemical pr
30、operties of new binary room-temperature molten salt electrolyte based on LiBETI and acetamideJ. Solid State Ionics 2004 175 1-4 277-280. 36 Hu Y S Wang Z X Li H et al. Ionic conductivity and association studies of novel RTMS electrolyte based on LiTFSI and acetamideJ. J. Electrochem. Soc. 2004 151 9
31、 A1424-A1428. 37 Xie B Li L F Li H et al. A preliminary study on a new LiBOB/acetamide solid phase transition electrolyteJ. Solid State Ionics 2009 180 9-10 688-692. 38 He X M Pu W H Wang L et al. Plastic crystals An effective ambient temperature all-solid-state electrolyte for lithium batteriesJ. P
32、rog. Chem. 2006 18 1 24-29. 39 Timmermans J. Plastic crystalsiA historical reviewJ. J. Phys. Chem. Solids 1961 18 1 1-8. 40 Post B. The cubic form of carbon tetrachlorideJ. Acta Crystallogr1959 12 4 349. 41 Staveley L A. Phase transitions in plastic crystalsJ. Annu. Rev. Phys. Chem. 1962 13 351-368.
33、 42 Cooper E I Angell C A. Ambient-temperature plastic crystal fast ion conductors(plicfics)J. Solid State Ionics 1986 18-19 570-576. 43 Chandra D Helms J H Majumdar A. Ionic-conductivity in ordered and disordered phases of plastic crystalsJ. J. Electrochem. Soc.1994 141 7 1921-1927. 44 Hattori MFuk
34、ada S INakamura Det al. Studies of the anisotropic self-diffusion and reorientation of butylammonium cations in the rotator phase of butylammonium chloride using H-1 magnetic-resonance electrical-conductivity and thermal measurementsJ. J. Chem. Soc. Faraday T. 1990 86 223777-3783. 45 Ishida H Furukawa Y Kashino S et al. Phase transitions and ionic motions in solid t