收藏 分享(赏)

转本复习知识点大全.doc

上传人:精品资料 文档编号:10329756 上传时间:2019-10-30 格式:DOC 页数:38 大小:1.50MB
下载 相关 举报
转本复习知识点大全.doc_第1页
第1页 / 共38页
转本复习知识点大全.doc_第2页
第2页 / 共38页
转本复习知识点大全.doc_第3页
第3页 / 共38页
转本复习知识点大全.doc_第4页
第4页 / 共38页
转本复习知识点大全.doc_第5页
第5页 / 共38页
点击查看更多>>
资源描述

1、江苏转本高数复习总结1函数名称函数的记号 函数的图形 函数的性质指数函数a):不论 x 为何值,y 总为正数;b):当 x=0 时,y=1.对数函数a):其图形总位于 y 轴右侧,并过(1,0)点b):当 a1 时,在区间(0,1)的值为负;在区间(-,+)的值为正;在定义域内单调增.幂函数a 为任意实数这里只画出部分函数图形的一部分。令 a=m/na):当 m 为偶数 n 为奇数时,y 是偶函数;b):当 m,n 都是奇数时,y 是奇函数;c):当 m 奇 n 偶时,y 在(-,0)无意义.三角函数(正弦函数)这里只写出了正弦函数a):正弦函数是以 2 为周期的周期函数b):正弦函数是奇函数

2、且反三角函数(反正弦函数)这里只写出了反正弦函数a):由于此函数为多值函数,因此我们此函数值限制在-/2,/2上,并称其为反正弦函数的主值.函数的名称函数的表达式 函数的图形 函数的性质江苏转本高数复习总结2双曲正弦a):其定义域为:(-,+);b):是奇函数;c):在定义域内是单调增双曲余弦a):其定义域为:(-,+);b):是偶函数;c):其图像过点(0,1);双曲正切a):其定义域为:(-,+);b):是奇函数;c):其图形夹在水平直线 y=1 及 y=-1之间;在定域内单调增;双曲函数的性质 三角函数的性质shx 与 thx 是奇函数,chx 是偶函数 sinx 与 tanx 是奇函数

3、,cosx 是偶函数它们都不是周期函数 都是周期函数江苏转本高数复习总结3一、函数与极限1、集合的概念、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作 N、所有正整数组成的集合叫做正整数集。记作 N+或 N+。、全体整数组成的集合叫做整数集。记作Z。、全体有理数组成的集合叫做有理数集。记作 Q。、全体实数组成的集合叫做实数集。记作R。、邻域:设 与 是两个实数,且 0.满足不等式x- 的实数 x 的全体称为点 的 邻域,点 称为此邻域的中心, 称为此邻域的半径。2、函数、函数的定义:如果当变量 x 在其变化范围内任意取定一个数值时,量 y 按照一定的法则f 总有确定的数值与它对应,则

4、称 y 是 x 的函数。变量 x 的变化范围叫做这个函数的定义域。通常x 叫做自变量,y 叫做函数值(或因变量),变量y 的变化范围叫做这个函数的值域。注:为了表明y 是 x 的函数,我们用记号 y=f(x)、y=F(x)等等来表示。这里的字母“f“、“F“表示 y 与 x 之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函

5、数的定义域和对应关系完全一致,我们就称两个函数相等。、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为 r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:3、函数的简单性态、函数的有界性:如果对属于某一区间 I的所有 x

6、 值总有f(x)M 成立,其中 M 是一个与 x 无关的常数,那么我们就称 f(x)在区间 I 有界,否则便称无界。注:一个函数,如果在其整个定义域内有界,则称为有界函数例题:函数 cosx 在(-,+)内是有界的.、函数的单调性:如果函数 在区间(a,b)内随着 x 增大而增大,即:对于(a,b)内任意两点 x1及 x2,当 x1x 2时,有 ,则称函数 在区间(a,b)内是单调增加的。如果函数 在区间(a,b)内随着 x 增大而减小,即:对于(a,b)内任意两点 x1及 x2,当 x1x 2时,有 ,则称函数 在区间 (a,b)内是单调减小 的。例题:函数 =x2在区间(-,0) 上是单调

7、减小的,在区间(0,+)上是单调增加的。、函数的奇偶性如果函数 对于定义域内的任意 x 都满足 = ,则 叫做偶函数; 如果函数 对于定义域内的任意 x 都满足=- ,则 叫做奇函数。注:偶函数的图形关于 y 轴对称,奇函数的图形关于原点对称。、函数的周期性对于函数 ,若存在一个不为零的数 l,使得关系式 对于定义域内任何x 值都成立,则 叫做周期函数 , l 是的周期。注:我们说的周期函数的周期是指最小正周期。例题:函数 是以 2 为周期的周期函数;函数 tan x 是以 为周期的周期函数。4、反函数江苏转本高数复习总结4、反函数的定义:设有函数 ,若变量 y 在函数的值域内任取一值 y0时

8、,变量 x在函数的定义域内必有一值 x0与之对应,即,那末变量 x 是变量 y 的函数.这个函数用 来表示,称为函数的反函数.注:由此定义可知,函数 也是函数 的反函数。 、反函数的存在定理:若 在(a,b)上严格增(减),其值域为 R,则它的反函数必然在 R 上确定,且严格增(减).注:严格增(减)即是单调增(减)例题:y=x 2,其定义域为(-,+),值域为0,+).对于 y 取定的非负值,可求得 x= .若我们不加条件,由 y 的值就不能唯一确定 x 的值,也就是在区间(-,+)上,函数不是严格增(减),故其没有反函数。如果我们加上条件,要求 x0,则对 y0、x= 就是 y=x2在要求

9、x0 时的反函数。即是:函数在此要求下严格增(减). 、反函数的性质:在同一坐标平面内,与 的图形是关于直线 y=x对称的。例题:函数 与函数 互为反函数,则它们的图形在同一直角坐标系中是关于直线 y=x 对称的。如右图所示: 5、复合函数复合函数的定义:若 y 是 u 的函数:,而 u 又是 x 的函数: ,且 的函数值的全部或部分在 的定义域内,那末,y 通过 u 的联系也是 x 的函数,我们称后一个函数是由函数 及 复合而成的函数,简称复合函数,记作,其中 u 叫做中间变量。注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。例题:函数 与函数是不能复合成一个函数的。因为对于

10、的定义域(-,+)中的任何 x 值所对应的 u 值(都大于或等于 2),使都没有定义。6、初等函数、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。下面我们用表格来把它们总结一下:、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.例题:是初等函数。7、双曲函数及反双曲函数、双曲函数:在应用中我们经常遇到的双曲函数是:(用表格来描述)我们再来看一下双曲函数与三角函数的区别:双曲函数也有和差公式:、反双曲函数:双曲函数的反函数称为反双曲函数.a):反双曲正弦函数 其定义域为:

11、(-,+);b):反双曲余弦函数 其定义域为:1,+);c):反双曲正切函数 其定义域为:(-1,+1);8、数列的极限我们先来回忆一下初等数学中学习的数列的概念。 江苏转本高数复习总结5、数列:若按照一定的法则,有第一个数a1,第二个数 a2,依次排列下去,使得任何一个正整数 n 对应着一个确定的数 an,那末,我们称这列有次序的数 a1,a 2,a n,为数列.数列中的每一个数叫做数列的项。第 n 项 an叫做数列的一般项或通项.注:我们也可以把数列 an看作自变量为正整数 n 的函数,即:a n= ,它的定义域是全体正整数 、极限:极限的概念是求实际问题的精确解答而产生的。例:我们可通过

12、作圆的内接正多边形,近似求出圆的面积。、数列的极限:一般地,对于数列来说,若存在任意给定的正数(不论其多么小),总存在正整数 N,使得对于nN 时的一切 不等式 都成立,那末就称常数 a 是数列 的极限,或者称数列收敛于 a .记作: 或注:此定义中的正数 只有任意给定,不等式 才能表达出 与 a 无限接近的意思。且定义中的正整数 N 与任意给定的正数 是有关的,它是随着 的给定而选定的。、数列的极限的几何解释:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。数列 极限为 a 的一个几何解释:将常数 a 及数列在数轴上用它们的对应点表示出来,再在数轴上作点 a

13、的 邻域即开区间(a-,a+),如下图所示:因不等式 与不等式等价,故当 nN 时,所有的点 都落在开区间 (a-,a+)内,而只有有限个(至多只有 N 个)在此区间以外。注:至于如何求数列的极限,我们在以后会学习到,这里我们不作讨论。 、数列的有界性:对于数列 ,若存在着正数 M,使得一切 都满足不等式 M,则称数列 是有界的,若正数 M 不存在,则可说数列 是无界的。定理:若数列 收敛,那末数列 一定有界。注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。例:数列 1,-1,1,-1,(-1) n+1, 是有界的,但它是发散的。9、函数的极限前面我们学习了数列的极

14、限,已经知道数列可看作一类特殊的函数,即自变量取 1内的正整数,若自变量不再限于正整数的顺序,而是连续变化的,就成了函数。下面我们来学习函数的极限.函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点 x0,如果在这时,函数值无限接近于某一常数 A,就叫做函数存在极值。我们已知道函数的极值的情况,那么函数的极限如何呢 ?下面我们结合着数列的极限来学习一下函数极限的概念!、函数的极限(分两种情况)a):自变量趋向无穷大时函数的极限定义:设函数 ,若对于任意给定的正数 (不论其多么小),总存在着正数 X,使得对于适合不等式 的一切 x,所对应的函数值 都满足不等式那末常数 A

15、就叫做函数 当 x时的极限,记作:下面我们用表格把函数的极限与数列的极限对比一下:江苏转本高数复习总结6数列的极限的定义 函数的极限的定 义存在数列与常数 A,任给一正数 0,总可找到一正整数 N,对于 nN 的所有都满足 则称数列 ,当 x时收敛于 A 记: 。存在函数与常数A,任给一正数0,总可找到一正数 X,对于适合的一切 x,都满足,函数 当x时的极限为 A,记:。b):自变量趋向有限值时函数的极限。我们先来看一个例子.例:函数 ,当 x1 时函数值的变化趋势如何?函数在 x=1 处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个点,为此我们把 x1 时函数值的变

16、化趋势用表列出,如下图:从中我们可以看出 x1 时, 2.而且只要 x 与 1 有多接近, 就与 2 有多接近.或说:只要 与 2 只差一个微量 ,就一定可以找到一个 ,当 时满足 定义:设函数 在某点 x0的某个去心邻域内有定义,且存在数 A,如果对任意给定的 (不论其多么小),总存在正数 ,当0 时, 则称函数当 xx 0时存在极限,且极限为 A,记:。注:在定义中为什么是在去心邻域内呢?这是因为我们只讨论 xx 0的过程,与 x=x0出的情况无关。此定义的核心问题是:对给出的 ,是否存在正数 ,使其在去心邻域内的 x 均满足不等式。有些时候,我们要用此极限的定义来证明函数的极限为 A,其

17、证明方法是怎样的呢?a):先任取 0;b):写出不等式 ;c):解不等式能否得出去心邻域0 ,若能;d):则对于任给的 0,总能找出 ,当0 时, 成立,因此10、函数极限的运算规则、函数极限的运算规则若已知 xx 0(或 x)时,.则: 推论:在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。函数极限的存在准则学习函数极限的存在准则之前,我们先来学习一下左、右的概念。我们先来看一个例子:例:符号函数为对于这个分段函数,x 从左趋于 0 和从右趋于0 时函数极限是不相同的.为此我们定义了左、右极限的概念。江苏转本高数复习总结7定义:如果 x 仅从左侧(xx 0)趋

18、近 x0时,函数 与常量 A 无限接近,则称 A 为函数当 时的左极限.记:如果 x 仅从右侧(xx 0)趋近 x0时,函数与常量 A 无限接近,则称 A 为函数当 时的右极限.记:注:只有当 xx 0时,函数 的左、右极限存在且相等,方称 在 xx 0时有极限函数极限的存在准则准则一:对于点 x0的某一邻域内的一切 x,x 0点本身可以除外(或绝对值大于某一正数的一切 x)有 ,且 ,那末 存在,且等于 A注:此准则也就是夹逼准则.准则二:单调有界的函数必有极限.注:有极限的函数不一定单调有界两个重要的极限一:注:其中 e 为无理数,它的值为:e=2.718281828459045.二:例题

19、:求解答:令 ,则 x=-2t,因为 x,故 t,则注:解此类型的题时,一定要注意代换后的变量的趋向情况,象 x时,若用 t 代换 1/x,则 t0.无穷大量和无穷小量无穷大量我们先来看一个例子:已知函数 ,当 x0 时,可知,我们把这种情况称为 趋向无穷大。为此我们可定义如下:设有函数 y=,在 x=x0的去心邻域内有定义,对于任意给定的正数 N(一个任意大的数),总可找到正数,当时, 成立,则称函数当 时为无穷大量。记为: (表示为无穷大量,实际它是没有极限的)同样我们可以给出当 x时, 无限趋大的定义:设有函数 y= ,当 x 充分大时有定义,对于任意给定的正数 N(一个任意大的数),总

20、可以找到正数 M,当 时,成立,则称函数当 x时是无穷大量,记为:无穷小量以零为极限的变量称为无穷小量。定义:设有函数 ,对于任意给定的正数 (不论它多么小),总存在正数 (或正数 M),使得对于适合不等式 (或)的一切 x,所对应的函数值满足不等式,则称函数 当 (或x)时 为无穷小量.记作: (或 )注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有 0 可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于 0.无穷大量与无穷小量是互为倒数关系的.关于无穷小量的两个定理定理一:如果函数 在 (或x)时有极限 A,则差 是当江苏转本高数复习

21、总结8(或 x)时的无穷小量,反之亦成立。定理二:无穷小量的有利运算定理a):有限个无穷小量的代数和仍是无穷小量;b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量.无穷小量的比较通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。定义:设 , 都是 时的无穷小量,且 在 x0的去心领域内不为零,a):如果 ,则称 是 的高阶无穷小或 是 的低阶无穷小;b):如果 ,则称 和 是同阶无穷小;c):如果 ,则称 和 是等价无穷小,记作:( 与 等价)例:因

22、为 ,所以当 x0 时,x与 3x 是同阶无穷小;因为 ,所以当 x0 时,x 2是 3x的高阶无穷小;因为 ,所以当 x0 时,sinx与 x 是等价无穷小。等价无穷小的性质设 ,且 存在,则 .注:这个性质表明:求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替,因此我们可以利用这个性质来简化求极限问题。例题:求 此题不能将其展开成两个函数差的形式,因为 X(3X)3 的极限为无穷大,极限不存在,不符合等价无穷小的条件 存在解答:注:注:从这个例题中我们可以发现,作无穷小变换时,要代换式中的某一项,不能只代换某个因子。函数的一重要性质连续性在自然界中有许多现象,如气温的变化,植物的

23、生长等都是连续地变化着的.这种现象在函数关系上的反映,就是函数的连续性在定义函数的连续性之前我们先来学习一个概念增量设变量 x 从它的一个初值 x1变到终值 x2,终值与初值的差 x2-x1就叫做变量 x 的增量,记为: x 即: x=x2-x1 增量 x 可正可负.我们再来看一个例子:函数 在点x0的邻域内有定义,当自变量 x 在领域内从 x0变到 x0+ x 时,函数 y 相应地从 变到,其对应的增量为:这个关系式的几何解释如下图:现在我们可对连续性的概念这样描述:如果当 x 趋向于零时,函数 y 对应的增量 y 也趋向于零,即: ,那末就称函数在点 x0处连续。函数连续性的定义:设函数

24、在点 x0的某个邻域内有定义,如果有 称函数在点 x0处连续,且称 x0为函数的的连续点.江苏转本高数复习总结9下面我们结合着函数左、右极限的概念再来学习一下函数左、右连续的概念:设函数在区间 (a,b内有定义,如果左极限存在且等于 ,即:= ,那末我们就称函数在点 b 左连续 .设函数 在区间a,b)内有定义,如果右极限 存在且等于,即: = ,那末我们就称函数 在点 a 右连续.一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若又在 a 点右连续,b 点左连续,则在闭区间a,b连续,如果在整个定义域内连续,则称为连续函数。注:一个函数若在定义域内某一点左、右都连续,则称函数在此

25、点连续,否则在此点不连续.注:连续函数图形是一条连续而不间断的曲线。通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现什么情形呢?接着我们就来学习这个问题:函数的间断点函数的间断点定义:我们把不满足函数连续性的点称之为间断点.它包括三种情形: a): 在x0无定义;b): 在xx 0时无极限;c): 在xx 0时有极限但不等于 ;下面我们通过例题来学习一下间断点的类型:例 1: 正切函数 在 处没有定义,所以点 是函数 的间断点,因 ,我们就称 为函数的无穷间断点;例 2:函数 在点 x=0 处没有定义;故当 x0 时,函数值在-1 与+1 之间变动无限多

26、次,我们就称点 x=0 叫做函数 的振荡间断点;例 3:函数 当 x0 时,左极限 ,右极限 ,从这我们可以看出函数左、右极限虽然都存在,但不相等,故函数在点 x=0 是不存在极限。我们还可以发现在点 x=0 时,函数值产生跳跃现象,为此我们把这种间断点称为跳跃间断点;我们把上述三种间断点用几何图形表示出来如下:可去间断点若 x0是函数 的间断点,但极限存在,那末 x0是函数 的第一类间断点。此时函数不连续原因是: 不存在或者是存在但 。我们令,则可使函数 在点 x0处连续,故这种间断点 x0称为可去间断点。间断点的分类我们通常把间断点分成两类:如果 x0是函数的间断点,且其左、右极限都存在,

27、我们把 x0称为函数 的第一类间断点 ;不是第一类间断点的任何间断点,称为第二类间断点.连续函数的性质及初等函数的连续性连续函数的性质函数的和、积、商的连续性我们通过函数在某点连续的定义和极限的四则运算法则,可得出以下结论:a):有限个在某点连续的函数的和是一个在江苏转本高数复习总结10该点连续的函数;b):有限个在某点连续的函数的乘积是一个在该点连续的函数;c):两个在某点连续的函数的商是一个在该点连续的函数(分母在该点不为零);反函数的连续性若函数 在某区间上单调增(或单调减)且连续,那末它的反函数 也在对应的区间上单调增(单调减)且连续例:函数 在闭区间 上单调增且连续,故它的反函数 在

28、闭区间-1,1上也是单调增且连续的。复合函数的连续性设函数 当 xx 0时的极限存在且等于 a,即: .而函数 在点 u=a 连续,那末复合函数 当xx 0时的极限也存在且等于 .即:例题:求解答:设函数 在点 x=x0连续,且,而函数 在点 u=u0连续,那末复合函数 在点 x=x0也是连续的初等函数的连续性通过前面我们所学的概念和性质,我们可得出以下结论:基本初等函数在它们的定义域内都是连续的;一切初等函数在其定义域内也都是连续的.闭区间上连续函数的性质闭区间上的连续函数则是在其连续区间的左端点右连续,右端点左连续.对于闭区间上的连续函数有几条重要的性质,下面我们来学习一下:最大值最小值定

29、理:在闭区间上连续的函数一定有最大值和最小值。(在此不作证明)例:函数 y=sinx 在闭区间0,2上连续,则在点 x=/2 处,它的函数值为 1,且大于闭区间0,2上其它各点出的函数值;则在点x=3/2 处,它的函数值为-1,且小于闭区间0,2上其它各点出的函数值。介值定理 在闭区间上连续的函数一定取得介于区间两端点的函数值间的任何值。即:, 在 、 之间,则在a,b间一定有一个 ,使推论: 在闭区间连续的函数必取得介于最大值最小值之间的任何值。二、导数与微分导数的概念导数的定义:设函数 在点 x0的某一邻域内有定义,当自变量 x 在 x0处有增量x(x+x 也在该邻域内)时,相应地函数有增

30、量,若y 与x 之比当x0 时极限存在,则称这个极限值为在 x0处的导数。函数 在点 x0处存在导数简称函数在点 x0处 可导,否则不可导。若函数在区间 (a,b)内每一点都可导,就称函数在区间 (a,b)内可导。这时函数对于区间(a,b)内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数 的导函数。注:导数也就是差商的极限左、右导数前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的概念。若极限 存在,我们就称它为函数在 x=x0处的左导数。若极限存在,我们就称它为函数 在x=x0处的右导数。注:函数 在 x0处的左右导

31、数存在且相等是函数 在 x0处的可导的充分必要条件函数的和、差求导法则函数的和差求导法则法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差).用公式可写为:。其中 u、v 为可导函数。江苏转本高数复习总结11函数的积商求导法则常数与函数的积的求导法则法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。用公式可写成: 函数的积的求导法则法则: 函数的商的求导法则法则: 复合函数的求导法则复合函数的求导规则规则:两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘上中间变量对自变量的导数。用公式表示为:,其中 u 为中间变量反函数求导法则根据反函数

32、的定义,函数 为单调连续函数,则它的反函数 ,它也是单调连续的.为此我们可给出反函数的求导法则,如下(我们以定理的形式给出):定理:若 是单调连续的,且,则它的反函数 在点 x 可导,且有: 注: 通过此定理我们可以发现:反函数的导数等于原函数导数的倒数。注:这里的反函数是以 y 为自变量的,我们没有对它作记号变换。即: 是对 y 求导, 是对 x 求导例题:求 的导数.解答:此函数的反函数为 ,故则:例题:求 的导数.解答:此函数的反函数为 ,故则:高阶导数定义:函数 的导数 仍然是 x 的函数.我们把 的导数叫做函数 的二阶导数,记作 或 ,即:或 .相应地,把的导数 叫做函数的一阶导数.

33、类似地,二阶导数的导数,叫做三阶导数,三阶导数的导数,叫做四阶导数,一般地(n-1)阶导数的导数叫做 n 阶导数.分别记作: , , 或 ,二阶及二阶以上的导数统称高阶导数。由此可见,求高阶导数就是多次接连地求导,所以,在求高阶导数时可运用前面所学的求导方法。例题:求对数函数 的 n 阶导数。解答: , , ,一般地,可得隐函数及其求导法则我们知道用解析法表示函数,可以有不同的形式.若函数 y 可以用含自变量 x 的算式表示,像y=sinx,y=1+3x 等,这样的函数叫显函数.前面我们所遇到的函数大多都是显函数.一般地,如果方程 F(x,y)=0 中,令 x 在某一区间内任取一值时,相应地总

34、有满足此方程的 y值存在,则我们就说方程 F(x,y)=0 在该区间上确定了 x 的隐函数 y.把一个隐函数化成显函数的形式,叫做隐函数的显化。隐函数的求导江苏转本高数复习总结12若已知 F(x,y)=0,求 时,一般按下列步骤进行求解:a):若方程 F(x,y)=0,能化为 的形式,则用前面我们所学的方法进行求导;b):若方程 F(x,y)=0,不能化为的形式,则是方程两边对 x 进行求导,并把 y 看成 x 的函数 ,用复合函数求导法则进行。例题:求隐函数 ,在 x=0 处的导数解答:两边对 x 求导,故,当 x=0 时,y=0.故 。有些函数在求导数时,若对其直接求导有时很不方便,像对某

35、些幂函数进行求导时,有没有一种比较直观的方法呢?下面我们再来学习一种求导的方法:对数 求导法对数求导法对数求导的法则:根据隐函数求导的方法,对某一函数先取函数的自然对数,然后在求导。注:此方法特别适用于幂函数的求导问题。例题:已知 x0,求此题若对其直接求导比较麻烦,我们可以先对其两边取自然对数,然后再把它看成隐函数进行求导,就比较简便些。如下解答:先两边取对数: ,把其看成隐函数,再两边求导因为 ,所以例题:已知 ,求此题可用复合函数求导法则进行求导,但是比较麻烦,下面我们利用对数求导法进行求导解答:先两边取对数再两边求导 因为,所以函数的微分函数微分的定义:设函数在某区间内有定义,x0及

36、x0+x 在这区间内,若函数的增量可表示为,其中 A 是不依赖于x 的常数, 是 x 的高阶无穷小,则称函数在点 x0可微的。 叫做函数在点 x0相应于自变量增量x 的微分,记作 dy,即: = 。通过上面的学习我们知道:微分 是自变量改变量x 的线性函数,dy 与y 的差 是关于x 的高阶无穷小量,我们把 dy 称作y 的线性主部。于是我们又得出:当x0 时,ydy.导数的记号为: ,现在我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把x 看成 dx,即:定义自变量的增量等于自变量的微分),还可表示为:由此我们得出:若函数在某区间上可导,则它在此区间上一定可微,反之亦成立

37、。微分形式不变性设 ,则复合函数 的微分为:,由于 ,故我们可以把复合函数的微分写成江苏转本高数复习总结13由此可见,不论 u 是自变量还是中间变量, 的微分 dy 总可以用 与 du 的乘积来表示,我们把这一性质称为微分形式不变性。例题:已知 ,求 dy解答:把 2x+1 看成中间变量 u,根据微分形式不变性,则基本初等函数的微分公式 由于函数微分的表达式为: ,于是我们通过基本初等函数导数的公式可得出基本初等函数微分的公式,下面我们用表格来把基本初等函数的导数公式与微分公式对比一下:(部分公式)导数公式 微分公式微分运算法则由函数和、差、积、商的求导法则,可推出相应的微分法则.为了便于理解

38、,下面我们用表格来把微分的运算法则与导数的运算法则对照一下:函数和、差、积、商的求导法则 函数和、差、积、商的微分法则例题:设 ,求 对 x3的导数解答:根据微分形式的不变性三、导数的应用微分学中值定理 设有连续函数 ,a 与 b 是它定义区间内的两点(ab),假定此函数在(a,b)处处可导,也就是在(a,b)内的函数图形上处处都由切线,那末我们从图形上容易直到,江苏转本高数复习总结14差商 就是割线 AB 的斜率,若我们把割线 AB 作平行于自身的移动,那么至少有一次机会达到离割线最远的一点 P(x=c)处成为曲线的切线,而曲线的斜率为 ,由于切线与割线是平行的,因此成立。注:这个结果就称为

39、微分学中值定理,也称为拉格朗日中值定理拉格朗日中值定理如果函数 在闭区间a,b上连续,在开区间(a,b)内可导,那末在(a,b)内至少有一点c,使成立。这个定理的特殊情形,即: 的情形,称为罗尔定理。描述如下:若 在闭区间a,b上连续,在开区间(a,b)内可导,且 ,那末在(a,b)内至少有一点 c,使 成立。下面我们在学习一条通过拉格朗日中值定理推广得来的定理柯西中值定理柯西中值定理如果函数 , 在闭区间a,b上连续,在开区间(a,b)内可导,且 0,那末在(a,b)内至少有一点 c,使成立。例题:证明方程 在 0 与 1之间至少有一个实根证明:不难发现方程左端 是函数 的导数:函数 在0,

40、1上连续,在(0,1)内可导,且 ,由罗尔定理可知,在 0 与 1 之间至少有一点 c,使,即也就是:方程 在 0与 1 之间至少有一个实根未定式问题 问题:什么样的式子称作未定式呢?答案:对于函数 , 来说,当xa(或 x)时,函数 , 都趋于零或无穷大则极限 可能存在,也可能不存在,我们就把式子 称为未定式。分别记为型我们容易知道,对于未定式的极限求法,是不能应用“商的极限等于极限的商“这个法则来求解的,那么我们该如何求这类问题的极限呢?下面我们来学习洛必达(LHospital)法则,它就是这个问题的答案注:它是根据柯西中值定理推出来的。罗彼塔(LHospital)法则当 xa(或 x)时

41、,函数 , 都趋于零或无穷大,在点 a 的某个去心邻域内(或当xN)时, 与 都存在,0,且 存在则: =这种通过分子分母求导再来求极限来确定未定式的方法,就是所谓的罗彼塔(LHospital)法则例题:求解答:容易看出此题利用以前所学的法则是不江苏转本高数复习总结15易求解的,因为它是未定式中的 型求解问题,因此我们就可以利用上面所学的法则了。例题:求解答:此题为未定式中的 型求解问题,利用罗彼塔法则来求解另外,若遇到 、 、 、 、 等型,通常是转化为 型后,在利用法则求解。例题:求解答:此题利用以前所学的法则是不好求解的,它为 型,故可先将其转化为 型后在求解,注:罗彼塔法则只是说明:对

42、未定式来说,当存在,则 存在且二者的极限相同;而并不是 不存在时,也不存在,此时只是说明了罗彼塔法则存在的条件破列。函数单调性的判定法 设函数 在a,b上连续,在(a,b)内可导.a):如果在(a,b)内 0,那末函数在a,b上单调增加;b):如果在(a,b)内 0,那末函数在a,b上单调减少.函数的极值及其求法函数极值的定义设函数 在区间 (a,b)内有定义, x0是(a,b)内一点.若存在着 x0点的一个邻域,对于这个邻域内任何点 x(x0点除外), 均成立,则说 是函数 的一个极大值;若存在着 x0点的一个邻域,对于这个邻域内任何点 x(x0点除外), 均成立,则说 是函数 的一个极小值

43、.函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。学习这个问题之前,我们再来学习一个概念驻点凡是使 的 x 点,称为函数 的驻点。判断极值点存在的方法有两种:如下方法一:设函数 在 x0点的邻域可导,且.情况一:若当 x 取 x0左侧邻近值时,0,当 x 取 x0右侧邻近值时,0,则函数 在 x0点取 极大值。情况一:若当 x 取 x0左侧邻近值时,0,当 x 取 x0右侧邻近值时,0,则函数 在 x0点取 极小值。注:此判定方法也适用于导数在 x0点不存在的情况。用方法一求极值的一般步骤是:a):求 ;b):求 的全部的解驻点;江苏转本高数复习总结16c):判断 在驻点两

44、侧的变化规律,即可判断出函数的极值。方法二:设函数 在 x0点具有二阶导数,且时 .则:a):当 0,函数 在 x0点取极大值;b):当 0,函数 在 x0点取极小值;c):当 =0,其情形不一定,可由方法一来判定.例题:求 极值点解答:先求导数再求出驻点:当 时,x=-2、1、-4/5判定函数的极值,如下图所示例题:我们仍以例 1 为例,以比较这两种方法的区别。解答:上面我们已求出了此函数的驻点,下面我们再来求它的二阶导数。,故此时的情形不确定,我们可由方法一来判定;0,故此点为极大值点;0,故此点为极小值点。函数的最大值、最小值及其应用怎样求函数的最大值、最小值呢?前面我们已经知道了,函数

45、的极值是局部的。要求 在a,b上的最大值、最小值时,可求出开区间(a,b)内全部的极值点,加上端点 的值,从中取得最大值、最小值即为所求。例题:求函数 ,在区间-3,3/2的最大值、最小值。解答: 在此区间处处可导,先来求函数的极值,故 x=1,再来比较端点与极值点的函数值,取出最大值与最小值即为所求。因为 , ,故函数的最大值为 ,函数的最小值为 。曲线的凹向与拐点 通过前面的学习,我们知道由一阶导数的正负,可以判定出函数的单调区间与极值,但是还不能进一步研究曲线的性态,为此我们还要了解曲线的凹性。定义:对区间 I 的曲线 作切线,如果曲线弧在所有切线的下面,则称曲线在区间 I 凸,如果曲线

46、在切线的上面,称曲线在区间 I 凹。曲线凹向的判定定理定理一:设函数 在区间(a,b)上可导,它对应曲线是向上凹(或向下凹)的充分必要条件是:导数 在区间(a,b) 上是单调增(或单调减)。定理二:设函数 在区间(a,b)上可导,并且具有一阶导数和二阶导数;那末:若在(a,b)内, 0,则在a,b对应的曲线是凹的;若在(a,b)内, 0,则在a,b对应的曲线是凸的;例题:判断函数 的凹向解答:我们根据定理二来判定。江苏转本高数复习总结17因为 ,所以在函数的定义域(0,+)内, 0,故函数所对应的曲线时下凹的。拐点的定义连续函数上,上凹弧与下凹弧的分界点称为此曲线上的拐点。拐定的判定方法如果

47、在区间(a,b)内具有二阶导数,我们可按下列步骤来判定 的拐点。(1):求 ;(2):令 =0,解出此方程在区间(a,b)内实根;(3):对于(2)中解出的每一个实根 x0,检查在 x0左、右两侧邻近的符号,若符号相反,则此点是拐点,若相同,则不是拐点。例题:求曲线 的拐点。解答:由 ,令 =0,得 x=0,2/3判断 在 0,2/3 左、右两侧邻近的符号,可知此两点皆是曲线的拐点。四、不定积分不定积分的概念 不定积分的概念函数 f(x)的全体原函数叫做函数 f(x)的不定积分,记作 。由上面的定义我们可以知道:如果函数 F(x)为函数 f(x)的一个原函数,那末 f(x)的不定积分就是函数族

48、 F(x)+C.即:=F(x)+C不定积分的性质1、函数的和的不定积分等于各个函数的不定积分的和;即:2、求不定积分时,被积函数中不为零的常数因子可以提到积分号外面来,即: 求不定积分的方法换元法换元法(一):设 f(u)具有原函数 F(u),u=g(x)可导,那末 Fg(x)是 fg(x)g(x)的原函数.即有换元公式:例题:求解答:这个积分在基本积分表中是查不到的,故我们要利用换元法。设 u=2x,那末 cos2x=cosu,du=2dx,因此:换元法(二):设 x=g(t)是单调的,可导的函数,并且 g(t)0,又设 fg(t)g(t)具有原函数 (t),则 g(x)是 f(x)的原函数.(其中 g(x)是 x=g(t)的反函数)即有换元公式:例题:求解答:这个积分的困难在于有根式,但是我们可以利用三角公式来换元.设 x=asint(-/2a.如果极限江苏转本高数复习总结20存在,则此极限叫做函数 f(x)在无穷区间a,+)上的广义积分,记作: ,即: =.此时也就是说广义积分 收敛。如果上述极限不存在,则说广义积分 发散,此时虽然用同样的记号,但它已不表示数值了。类似地,设函数 f(x)在

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报