第七节 克拉默法则,设线性方程组,则称此方程组为非,齐次线性方程组;,此时称方程组为齐次线性方程组.,非齐次与齐次线性方程组的概念,一、克拉默法则,如果线性方程组,的系数行列式不等于零,即,其中 是把系数行列式 中第 列的元素用方程 组右端的常数项代替后所得到的 阶行列式,即,那么线性方程组 有解,并且解是唯一的,解 可以表为,二、重要定理,定理1 如果线性方程组 的系数行列式 则 一定有解,且解是唯一的 .,定理2 如果线性方程组 无解或有两个不同的 解,则它的系数行列式必为零.,齐次线性方程组的相关定理,定理 如果齐次线性方程组 的系数行列式 则齐次线性方程组 没有非零解.,有非零解.,系数行列式,例1 用克拉默法则解方程组,解,例2 用克拉默法则解方程组,解,解,齐次方程组有非零解,则,所以 或 时齐次方程组有非零解.,1. 用克拉默法则解方程组的两个条件,(1)方程个数等于未知量个数;,(2)系数行列式不等于零.,2. 克拉默法则建立了线性方程组的解和已知的系 数与常数项之间的关系.它主要适用于理论推导.,三、小结,相关练习: P2810,11,12,作业,P28-8、9、10,思考题,当线性方程组的系数行列式为零时,能否用克拉默 法则解方程组?为什么?此时方程组的解为何?,思考题解答,不能,此时方程组的解为无解或有无穷多解.,