1、同济大学浙江学院土木系 管林波,第二章 深基坑的支护结构,同济大学浙江学院土木系 管林波,补偿性基础,即以天然地面到建筑物基础埋置深度之间的土体重量,来补偿一部分建筑物的荷重,故高层基础埋深均较大。但基础埋深加大给施工带来很多困难,尤其是在城市建筑物密集地区,施工现场附近有建筑物、道路和地下管线纵横交错,很多情况下不允许采用较经济的放坡开挖,而需要在人工支护条件下进行基坑开挖,本章即要研究这个问题。,同济大学浙江学院土木系 管林波,采用深基坑随着基础埋深加大给施工带来很多困难,尤其在城市建筑物密集地区,施工场地的狭小,邻近建筑物、道路和管线纵横交错,多数情况下不能放坡开挖,需要采用支护结构,这
2、就是本章所要研究的问题。,同济大学浙江学院土木系 管林波,应力圆与土的抗剪强度,C,B,O1,1,3,O,c,f,同济大学浙江学院土木系 管林波,支护结构的设计和施工,影响因素众多,不少高层建筑的支护结构费用已超过工程桩基的费用。为此,对待支护结构的设计和施工均应采取极慎重的态度,在保证施工安全的前提下,尽量做到经济合理和便于施工。,同济大学浙江学院土木系 管林波,第一节 支护结构的选型,支护结构包括挡墙和支撑(或拉锚)两部分。 档墙或支撑中任何一部分的选型不当或产生破坏(包括变形过大),都会导致整个支护结构的失败。,同济大学浙江学院土木系 管林波,支护结构的型式 放坡开挖 悬臂式支护结构 内
3、撑式支护结构 拉锚式支护结构 土钉墙支护结构 环梁护壁支护结构其它形式支护结构,同济大学浙江学院土木系 管林波,一. 挡墙的选型 (一) 钢板桩 1.槽钢钢板桩 2. 热轧锁口钢板桩 (二) 钢筋混凝土板桩 (三) 钻孔灌注桩挡墙 (四) H型钢支柱(或钢筋混凝土桩支柱) (五) 地下连续墙 (六) 深层搅拌水泥土桩挡墙 (七) 旋喷桩帷幕墙,同济大学浙江学院土木系 管林波,1.槽钢钢板桩 由槽钢并排或正反扣搭接组成。槽钢长68m,多用于深度不超过4m的基坑。顶部宜设一道支撑或拉锚。,(一) 钢板桩,同济大学浙江学院土木系 管林波,2 热轧锁口钢板桩其形式有U型、Z型、一字型、H型和组合型。U
4、型 Z型 一字型,同济大学浙江学院土木系 管林波,该板桩截面带企口,有一定的挡水作用,顶部设圈梁,用后不再拔除,永留地基土中。适于36m基坑,但应用较少。,(二)钢筋混凝土板桩,同济大学浙江学院土木系 管林波,常用6001000mm,是支护结构中应用最多的一种。宜形成排桩挡墙,顶部浇筑钢筋混凝土圈梁。但施工难以做到相切,挡水效果差。,(三) 钻孔灌注桩挡墙,同济大学浙江学院土木系 管林波,该类支护结构适用于土质较好、地下水位较低的地区。型钢或支柱按一定间距打入,支柱间设木挡板或其它挡土设施。,(四)H型钢支柱(钢筋混凝土桩支 柱)、木挡板支护墙,同济大学浙江学院土木系 管林波,(五)地下连续墙
5、,地下连续墙已是目前深基坑的主要支护结构之一。在地下结构层数多的深基坑的施工非常有利。地下连续墙常是采用“逆筑法”的支护结构的首选。天津市的华联商厦、紫金花园、鸿吉大厦、津汇广场等很多工程均采用地下连续墙方法施工。,同济大学浙江学院土木系 管林波,深层搅拌水泥土桩挡墙是用特制的进入土深层的深层搅拌机将喷出的水泥浆固化剂与地基土进行原位强制搅拌制成水泥土桩,相互搭接,硬化后即形成具有一定强度的壁状挡墙,既可挡土又可形成隔水帷幕。,( 六) 深层搅拌水泥土桩挡墙,同济大学浙江学院土木系 管林波,同济大学浙江学院土木系 管林波,同济大学浙江学院土木系 管林波,(,旋喷桩帷幕墙是钻孔后,将钻杆从地基土
6、深处逐渐上提,同时利用插入钻杆端部的旋转喷嘴,将水泥浆固化剂喷入地基土中,形成水泥土桩,桩体相连形成帷幕墙。旋喷桩帷幕墙可用作支护结构挡墙,也可用于挡水。,( 七) 旋喷桩帷幕墙,同济大学浙江学院土木系 管林波,当基坑深度较大,悬臂挡墙的强度和变形不能满足要求时,需增设支撑系统。 支撑系统有 基坑内支撑 基坑外拉锚(顶部拉锚土层锚杆拉锚) 常用的有 钢结构支撑 钢筋混凝土支撑,二. 支撑(拉锚)的选型,同济大学浙江学院土木系 管林波,1 钢管支撑 对撑,(一) 钢结构支撑,同济大学浙江学院土木系 管林波,1 钢管支撑角撑,(一) 钢结构支撑,同济大学浙江学院土木系 管林波,钢管支撑示意图,同济
7、大学浙江学院土木系 管林波,(一) 钢结构支撑,2 型钢支撑型钢支撑主要采用H型钢,用螺栓连接,为工具式钢支撑,现场组装方便,可重复使用。,同济大学浙江学院土木系 管林波,有角撑、对撑、桁架式支撑,还有圆形、拱形和椭圆形等形状的支撑。,圆形支撑,(二) 钢筋混凝土支撑,同济大学浙江学院土木系 管林波,第二节 支护结构计算,一. 支护结构的破坏形式和计算内容 支护结构可分为两类: 重力式支护结构 非重力式支护结构 重力式包括深层搅拌水泥土桩挡墙 旋喷桩帷幕墙 非重力式包括钢板桩、钢筋混凝土预制桩、钻孔灌注桩挡墙、地下连续墙等。,同济大学浙江学院土木系 管林波,包括 强度破坏 稳定性破坏。 强度破
8、坏(非重力式)1 拉锚破坏或支撑压曲地面荷载增加过多、,(一)非重力式支护结构挡墙的破坏,土压力过大使拉杆断裂, 或锚固失败、腰梁破坏、内支撑受压失稳。,同济大学浙江学院土木系 管林波,强度破坏(非重力式)2 支护墙体底部走动支护墙入土深度不够或挖土过深以及水的冲刷均可产生这种破坏。 需正确的计算入土深度,(一)非重力式支护结构挡墙的破坏,同济大学浙江学院土木系 管林波,3支护墙的平面变形过大或弯曲破坏支护墙截面过小、土压力估不准、墙后增大量地面荷载或挖土超深,需准确计算最大弯矩值以验算截面。,(一)非重力式支护结构挡墙的破坏,强度破坏(非重力式),同济大学浙江学院土木系 管林波,非重力式支护
9、结构的稳定性破坏1 墙后土体整体滑动失稳 拉锚的长度不够、 软粘腿发生圆弧 滑动,引起支护 结构整体失稳。,(一)非重力式支护结构挡墙的破坏,同济大学浙江学院土木系 管林波,非重力式支护结构的稳定性破坏 2 挡墙倾覆 3 坑底隆起 如挖土深度大,由于 卸土过多,在墙后土 重及地面荷载作用下 引起坑底隆起。,(一)非重力式支护结构挡墙的破坏,同济大学浙江学院土木系 管林波,非重力式支护结构的稳定性破坏4 管涌 在砂土区,当地下水 较高坑较深时,在动 水压力作用下,地下 水绕过支护墙连砂土 一同涌入基坑。,(一)非重力式支护结构挡墙的破坏,同济大学浙江学院土木系 管林波,(二)重力式支护结构的破坏
10、,重力式支护结构的破坏包括 强度破坏 稳定性破坏其强度破坏只是水 泥土抗剪强度不足,产生剪切破坏,为 此需验算最大剪应力处的墙身应力。,同济大学浙江学院土木系 管林波,(二)重力式支护结构的破坏,重力式支护结构的稳定性破坏包括: 1. 倾覆 2. 滑移 3. 土体整体滑动失稳 4. 坑底隆起 5. 管涌,同济大学浙江学院土木系 管林波,二 非重力式支护结构计算,(一)支护结构承受的荷载 支护结构承受的荷载一般包括 土压力 水压力 墙后地面荷载引起的附加荷载。,同济大学浙江学院土木系 管林波,二 非重力式支护结构计算,1 土压力主动土压力:若挡墙在墙后土压力作用下向前位移时随位移增大,墙后土压力
11、渐减小。当位移达某一数值时,土体内出现滑裂面,墙后土达极限平衡状态,此时土压力称为主动土压力,以Ea表示。,Ea,-,滑裂面,同济大学浙江学院土木系 管林波,二 非重力式支护结构计算,静止土压力:若挡墙 在土压力作用下墙本身 不发生变形和任何位移 (移动或滑动),墙后 填土处于弹性平衡状态, 则此时作用在挡墙上的 土压力成为静止土压力。 以E0表示。,E0,同济大学浙江学院土木系 管林波,二 非重力式支护结构计算,(3)被动土压力:若挡墙在外力作用下墙向墙背向移动,随位移增大,墙所受土的反作用力渐增大,当位移达一定数值时,土体内出现滑裂面,墙后土处被动极限平衡状态,此时土压力称为被动土压力,以
12、Ep表示。,+,外力,Ep,滑裂面,同济大学浙江学院土木系 管林波,土压力表示,主动土压力强度(无粘性土)粘性土,同济大学浙江学院土木系 管林波,对于粘性土按计算公式计算时,主动土压力在土层顶部(H=0处)为负值,即,表明出现拉力区,这在实际上是不可能发生的。可计算临界高度以下的主动土压力:,土压力分布,同济大学浙江学院土木系 管林波,Zc,H,可计算此种情况下的临界高度Zc,进而计算临界高度以下的主动土压力。,土压力分布,同济大学浙江学院土木系 管林波,土压力表示,被动土压力强度 无粘性土粘性土,同济大学浙江学院土木系 管林波,土压力表示,悬臂式挡土结构,对于土的性质、荷载大小等非常敏感,它
13、完全依靠足够的入土深度来保持其稳定性,故其高度一般不大于4。 为了施工的安全,支撑和锚杆宜根据最大土压力计算,即根据实测压力曲线的包络线来确定。该包络线近似梯形或矩形,与库伦理论计算的三角形土压力不同。,同济大学浙江学院土木系 管林波,土压力分布,悬臂无支撑挡墙,其压力分布为主动土压力,是三角形分布,被动土压力也是三角形分布。,被动土压力,主动土压力,同济大学浙江学院土木系 管林波,土压力分布,多支撑或多拉锚的挡墙背面上的土压力分布图形砂土为梯形,粘土土压力分布图是稍复杂的三角形。,同济大学浙江学院土木系 管林波,土压力分布,悬臂挡土墙所承受的 主动土压力完全由其 底部的被动土压力来 平衡;
14、而锚定板单支点的挡 土结构,其主动土压 力则由锚定板拉杆和 底部的被动土压力共 同承受,加以平衡。,T,Ea1,Ea2,EP,同济大学浙江学院土木系 管林波,土压力分布,不同深度处土的内聚力C不是一个常数,它与土的上覆荷重有关,一般随深度的加大而增大,对于暴露时间长的基坑,土的内聚力可由于土体含水量的变化和氧化等因素的影响而减小甚至消失。、C 值是计算侧向土压力的主要参数,但在工程桩打设前后的、C值是不同的。在粘性土中打设工程桩时,产生挤土现象,孔隙水压力急剧升高,对、C值产生影响。另外,降低地下水位也会使、C值产生变化。,同济大学浙江学院土木系 管林波,2. 水压力,作用于支护结构上的水压力
15、一般按静 水压力考虑。有稳态渗流时按三角形分布计算。,A,B,C,D,E,F,同济大学浙江学院土木系 管林波,2. 水压力,在有残余水压力时, 水压力按梯形分布。,同济大学浙江学院土木系 管林波,水压力和土压力,水压力和土压力的分算或合算问题,目前均采用。 一般情况下,由于粘性土中水主要是结晶水和结合水,宜合算; 在砂性土中土颗粒之间的空隙中充满的是自由水,受重力作用,为静水压力作用,宜分算。,同济大学浙江学院土木系 管林波,水压力和土压力,合算时,地下水位以下土的重力密度采用饱和重力密度sat ; 分算时,地下水位以下土的重力密度采用浮重力密度 ; 另外单独计算静水压力,按三角形分布考虑。,
16、同济大学浙江学院土木系 管林波,3. 墙后地面荷载引起附加荷载,有三种情况: 墙后有均布荷载 距离支护结构一定距离有均布荷载 距离支护结构一定距离有集中荷载(如塔吊、混凝土泵车等)由引起的附加荷载分布在支护结构的一定范围2上。,同济大学浙江学院土木系 管林波, 墙后有均布荷载,如墙后堆有土方、材料等地面均布荷载对支护结构引起的附加荷载,可按下式计算:,q,H,同济大学浙江学院土木系 管林波, 距离支护结构一定,距离有均布荷载此时压应力传到支护结构上有一空白距离h1 ,在h1之下产生均布的附加应力:,同济大学浙江学院土木系 管林波,3. 墙后地面荷载引起附加荷载, 距离支护结构一 定距离有集中荷
17、载 (如塔吊、混凝 土泵车等)由引 起的附加荷载分布 在支护结构的一定 范围2上。,同济大学浙江学院土木系 管林波,非重力式支护结构的计算,深基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计。基坑支护结构极限状态可有两类: 承载能力极限状态 正常使用极限状态,同济大学浙江学院土木系 管林波,非重力式支护结构的计算,1.承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致支护结构或基坑周边环境破坏; 2.正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正常使用功能。,同济大学浙江学院土木系 管林波,基坑侧壁安全等级及重要性系数,同济大学
18、浙江学院土木系 管林波,(二)悬臂桩墙的计算,排桩、地下连续墙嵌固深度设计值宜按下列规定: 1.悬臂式支护结构嵌固深度设计值hd宜按下式确定:,桩墙底以上基坑内侧各土层被动土压力强度和,桩墙底以上基坑外侧各土层主动土压力强度和,同济大学浙江学院土木系 管林波,悬臂桩墙的计算,合力,作用点至桩、 墙底的距离,合力,作用点至桩、墙底的距离,h、 分别为基坑挖深和桩墙入土深度,分别为被动土压力合力和主动土压力合力,同济大学浙江学院土木系 管林波,支护结构计算 当确定悬臂式及单支点支护结构嵌固深度设计值(构造要求),当基坑底为碎石土及砂土,基坑内排水且作用有渗透压力时,嵌固深度设计值还应满足下式抗渗稳
19、定条件:,同济大学浙江学院土木系 管林波,单支点支护结构计算,单层支点结构支点力 及嵌固深度计算支点 力:基坑底面以下支 护结构设定弯矩零点 至基坑底面距离hCl按 下式确定,同济大学浙江学院土木系 管林波,单支点支护结构计算,单层支点结构支点力及嵌固深度计算,支点力Tcl按下式计算,支点至基坑底面的距离,基坑底面至设定弯矩零点位置的位置,分别为合力 作用点至设定弯矩零点的距离,同济大学浙江学院土木系 管林波,(三)支护结构计算的其它方法,1 等值梁法 2弹性曲线法 3 竖向弹性地基梁法(基床系数法) 4 有限元法,同济大学浙江学院土木系 管林波,等值梁法,图中ab梁一端固定一端简支,弯矩图的
20、正负弯矩在c点转折,若将ab梁在c点切断,并于c点加一自由支承形成ac梁,则ac 梁上的弯矩将保持不变,即称ac梁为ab 梁上ac段上的等值梁。,等值梁原理,a,b,a,b,c,同济大学浙江学院土木系 管林波,等值梁法,介绍等值梁法:如ab梁一端固定,一端简支,弯矩图的正负弯矩在c点转折。若将ab梁在c点切断,并在c点置一自由支承,形成ac梁,则ac梁上的弯矩将保持不变,则称ac梁为ab梁上ac段的等值梁。,同济大学浙江学院土木系 管林波,等值梁法,同济大学浙江学院土木系 管林波,等值梁法,用等值梁计算板桩,先要知道正负弯矩的转折点的位置。因板桩地面下土压力等于0的位置,接近正负弯矩的转折点,
21、为简化即用土压力等于0的位置代替它。,同济大学浙江学院土木系 管林波,三 重力式支护结构计算,(一) 原理 重力式支护结构是依靠结构自身重力来维持极限平衡状态的。 (二) 荷载组合 1 土压力;2 重力式结构自重;3 地面超载包括:永久荷载、道路荷载、可变地下水位和施工荷载(施工机械荷载、材料堆放荷载)以及偶然荷载(地震荷载、人防荷载)。,同济大学浙江学院土木系 管林波,(三)重力式结构计算内容,1 滑动稳定性验算 2 倾覆稳定性验算 3.土体整体滑动验算 4. 坑底隆起验算 5. 管涌验算,同济大学浙江学院土木系 管林波,重力式支护结构计算简图,重力式支护结构 主要是深层搅拌 水泥土桩墙和旋
22、 喷桩帷幕墙,计 算简图如图:,同济大学浙江学院土木系 管林波,(三)重力式支护结构计算(滑动稳定性),1 滑动稳定性验算,墙体自重;,基底墙体与土的摩擦系数;,被动土压力合力;,主动土压力合力。,同济大学浙江学院土木系 管林波,(三)重力式支护结构计算(倾覆稳定性),2 倾覆稳定性验算,墙体自重;,墙体厚度之半;,分别为 对墙趾A点的力臂。,抗倾覆稳定安全系数;,同济大学浙江学院土木系 管林波,(三)重力式支护结构(整体滑动验算),3.土体整体滑动验算水泥土桩挡墙由于水泥掺量少,故将其看作提高了强度的部分土体,进行土体整体稳定性验算。,同济大学浙江学院土木系 管林波,重力式支护结构计算 (基
23、坑隆起),4. 坑底隆起,开挖面以下墙体能起帮助抵抗地基土隆起的作用,宜假定土体沿墙体底面滑动,认为墙体底面以下为一圆弧,如图所示。产生滑动力的是 和q,抵抗滑动的则为土体抗剪强度。,同济大学浙江学院土木系 管林波,重力式支护结构计算(基坑隆起),对于非理想粘性土,土的抗剪强度,AB面上 应为水平侧压力,取,同济大学浙江学院土木系 管林波,重力式支护结构计算(基坑隆起),将滑动力矩与抗滑力矩分别对圆心O取矩,得,同济大学浙江学院土木系 管林波,重力式支护结构计算(基坑隆起),抗滑动力矩,将上式积分并整理后得,同济大学浙江学院土木系 管林波,抗隆起安全系数,重力式支护结构计算(基坑隆起),为达稳
24、定,避免基坑隆起,必须满足 如要严格控制地面沉降,则需增加挡墙入土深度,或进行坑底土体加固,提高土体抗剪强度,使该系数达到1.52.0。,同济大学浙江学院土木系 管林波,5管涌验算 当基坑地下水的向上渗 流力 时土颗粒 处于悬浮状态,于是坑 底产生管涌现象。 不发生管涌的条件应为:,重力式支护结构计算(管涌验算),同济大学浙江学院土木系 管林波,挡墙入土深度如满足以下要求,也不会产生管涌:,重力式支护结构计算(管涌现象),如坑底以上的土层为松散填土、多裂隙土层等透水性好的土层,则地下水可略去,此时不产生管涌的条件为:,同济大学浙江学院土木系 管林波,第三节 支护结构施工,一 钢板桩施工(一)
25、常用种类:U型、Z型、H型、直腹板式和组合式。,同济大学浙江学院土木系 管林波,钢板桩的施工,(二) 打设前准备工作1 钢板桩的检验和矫正2 导架安装3 沉桩机械的选择打设钢板桩可用落锤、汽锤、柴油锤和振动锤,前三种皆为冲击打入法,此法可使桩锤的冲击力均匀分布,保护桩顶免受损坏。,同济大学浙江学院土木系 管林波,钢板桩的施工,(三)钢板桩的打设和拔除 1 打设方式选择 单独打入法 即从板桩墙的一角始,逐块打设,直至工程结束。 屏风式打入法 即将1020根钢板桩成排插入导架内,呈屏风状,再分批施打。(按屏风排数,分为单屏风、双屏风和全屏风),同济大学浙江学院土木系 管林波,钢板桩施工,(三)钢板
26、桩的打设和拔除 2 钢板桩的打设吊车对准插桩,经纬仪加以控制,分几次打入,注意位置和方向的精度,每打入1m应测量一次。,同济大学浙江学院土木系 管林波,钢板桩的施工,3 钢板桩的转角和封闭转角和封闭合拢施工的方法: 采用异型板桩 连接件法 骑缝搭接法 轴线调整法,同济大学浙江学院土木系 管林波,钢板桩的施工,4 钢板桩的拔除拔桩前要研究钢板桩拔除顺序、拔除时间和桩孔处理方法。拔除宜用振动锤或振动锤与起重机共同拔除。,同济大学浙江学院土木系 管林波,二 钻孔灌注桩挡墙施工,钻孔灌注桩挡墙施工 (主要在第五章介绍) 钻孔灌注桩施工时无振动,不会危害周围建筑物等,造价低,有优越性。 施工速度慢,宜注
27、意质量。 钻孔灌注桩的间距由计算确定。 钻孔灌注桩用作支护桩时,按钢筋混凝土正截面受弯构件计算配筋。,同济大学浙江学院土木系 管林波,三 深层搅拌水泥土桩墙施工,(一)施工机具1 深层搅拌机中心管喷浆方式叶片喷浆方式前者的输浆方式是水泥浆从两根搅拌轴间的另一根管输出;后者是使水泥浆从叶片的小孔喷出。2 配套机械(灰浆搅拌机、集料斗、灰浆泵。),同济大学浙江学院土木系 管林波,三 深层搅拌水泥土桩墙施工,(二)施工工艺定位预拌下沉制备水泥浆提升、喷浆、搅拌重复上、下搅拌清洗、移位,同济大学浙江学院土木系 管林波,三.深层搅拌水泥土桩挡墙,(三)水泥土的配合比 水泥土的抗压强度一般为5004000
28、 KN/,水泥的掺入量取决于水泥土挡墙设计的抗压强度。 水泥标号的提高,使水泥土强度相应提高。 搅拌施工的水泥浆水灰比一般采用0.450.50,为减少用水量,有利于泵送,可选用木质素磺酸钙作减水剂,另加入三乙醇胺早强剂。,同济大学浙江学院土木系 管林波,三.深层搅拌水泥土桩墙,(四)提高水泥土桩挡墙支护能力的措施1. 卸载 挖去顶部一部分以减少主动土压力2. 加筋 可在墙中压入竹筋等,有助于提高墙体 稳定性。3. 起拱 将水泥土挡墙作成拱形,在拱脚处设钻孔灌注桩,可提高其支护能力。4. 挡墙变厚度 对矩形基坑因边角效应,在角部的主动土压力有所减小,故角部可减薄水泥土挡墙的厚度,以节约投资。,同
29、济大学浙江学院土木系 管林波,一. 支护结构监测项目,第四节 支护结构监测,同济大学浙江学院土木系 管林波,二. 支护结构监测常用仪器支护结构与周围环境的监测,主要分为应力监测与变形监测。应力检测主要用机械系统和电器系统的仪器。变形监测主要用机械系统、电器系统和光学系统的仪器。,第四节 支护结构监测,同济大学浙江学院土木系 管林波,二. 支护结构监测常用仪器(一)变形监测仪器常用的有 经纬仪水准仪测斜仪主要是测斜仪。,第四节 支护结构监测,同济大学浙江学院土木系 管林波,二. 支护结构监测常用仪器测斜仪是一种测量仪器轴线与铅直线之间夹角的变化量,进行计算挡墙或土层各点水平位移的仪器。按工作原理
30、,测斜仪可分为伺服加速度式电阻应变片式差动电阻式差动电容式钢弦式最常用的是伺服加速度式和电阻应变片式。,第四节 支护结构监测,同济大学浙江学院土木系 管林波,二. 支护结构监测常用仪器 (二)应力监测仪器1. 土压力观测仪器 土压力计(土压力盒)液压式气压平衡式电器式钢弦式,第四节 支护结构监测,同济大学浙江学院土木系 管林波,二. 支护结构监测常用仪器 (二)应力监测仪器2. 孔隙水压力计测量孔隙水压力使用最多的是孔隙水压力计,其形式、工作原理均与土压力计相同。孔隙水压力计宜钻孔埋设,待钻孔至要求深度后,先将孔底填入部分干净的砂,将测头放入,再将测头周围填砂,最后用粘土将上部钻孔封闭。,第四节 支护结构监测,同济大学浙江学院土木系 管林波,二. 支护结构监测常用仪器 (二)应力监测仪器3. 支撑内力测试支撑内力测试常用的几种方法:用压力传感器贴电阻应变片用千分表位移量测装置用应力、应变传感器,第四节 支护结构监测,