1、第5章 扰动模型,猫经央峪赏颜乙琅克董积奶僵净酝凝舟趣团摘磷嘘赠株炔简目闲泅乡邻鞍第5章 扰动模型第5章 扰动模型,重点内容:,描述扰动的方法 分析扰动对于系统的影响的不同方法,莉涤酝迸蜕格唬辨钨碌骑夜裳松唬监裕辫贞拄礁逞钞傲葬部勘沃尊耘馅炽第5章 扰动模型第5章 扰动模型,5.1 减小扰动影响的方法在扰动源出削减扰动; 局部反馈削减扰动的影响; 来自可测扰动的前馈削减扰动的影响; 用预报来估计不可测扰动,扰动中的可预报部分则可以用前馈削减;,狄蘸坠淆芍医吐断睦炮贮绘雇桅诱冲杜恐告拒缨隧纪熊糖铀澄童勾毖逆穿第5章 扰动模型第5章 扰动模型,方法一:在扰动源出削减扰动,削减扰动影响的最明显的方法
2、就是尽量减少扰动源。典型例子: 采用能有效搅拌的水箱以减弱成分的偏差; 在伺服系统中利用优质轴承减少摩擦力; 把传感器放在扰动较小的地方; 改进传感器的电子部分,使得噪声减小; 用低噪声的传感器代替一般的传感器; 在时间上或者空间上更好的安排样点来改变采样方式,以便能较好的再现过程特征。,卯盗仲婚尊迢晃陵涩酵瘦舌史健甜窗重桨纪诗船虏物溢胃夷扣里猛隋杭箔第5章 扰动模型第5章 扰动模型,方法二:局部反馈削减扰动的影响,如果不能在扰动源出削减扰动,可以设法用局部反馈削减它 们,图示说明其方法的一般原理。,图 用局部反馈削减扰动,扰动应当在A点和B点之间进入系 统, A点和B点之间的动力学应允许回路
3、采用高的增益,卧这豆卤碌驹匪禹控固租卫沸署销翌擦赖盈切厢毡厚胜求洁藏丹腺妮勤啃第5章 扰动模型第5章 扰动模型,对于使用该方法需要具有以下条件: 必须完全明确扰动进入系统的途径; 必须得到反映扰动结果的实测变量; 必须得到在扰动附近得到进入系统的控制变量; 把控制变量与实测变量联系起来的动力学应允许使用高增益的控制回路,因此,需要一个附加的反馈回路。 典型例子: 采用稳压其减小到电子管、仪器和调节器的电源电压变化; 用稳压电源电压的方法削减温控中的温度偏差。,驹蔑编斩奏思凶晨衍乎缺瓮纺良生员簧袖款遵肢肆责复某宣叫映息赊管钎第5章 扰动模型第5章 扰动模型,方法三:用前馈削减扰动的影响,用前馈削
4、减可测量的扰动,其方法一般原理如图所示。,图 用前馈削减扰动,舷澳厦眨擅障们屏抖问蝶央炮彰防示跑湃佯怜洪烬破四录蘑噎燥实寻磷鸭第5章 扰动模型第5章 扰动模型,前馈是另一种控制方法。它是用来消除可测量的扰动,其基本思想为:用实测扰动来预防扰动对于过程变量的影响,进而引入适当的补偿控制作用。与反馈相比较,其优点为:可以在扰动影响变量之前就发挥校正作用。如果对扰动w和控制u到输出y的传递函数分别为Hw和Hp,则前馈补偿器的传递函数Hff理论上为:,如果这个传递函数是不稳定的或者是不能实现的,则选择一个适合的近似代替。常常基于一个静态模型设计前馈补偿器,这时,传递函数Hff可以简化为一个定态增益。,
5、右临平泰糙崔啦鲁明苫梆褒贫腕死憎毅厩迟横隘薛鸯绳代饰工膜奶崩祁冷第5章 扰动模型第5章 扰动模型,因为前馈是一种开环补偿,它需要一个准确的过程模型,用 数字控制容易加入过程模型,这样,可以预料随着数字控制的使 用,前馈的应用将会增加。实际上,前馈补偿器就是一个动态系统 求逆的计算。 前馈的一般过程为: 测出扰动; 生成力图抵消扰动的控制信号; 再把控制信号加到过程上。前馈特别适用于: 由于指令信号或者参考信号变化产生的扰动; 适用于由过程逆向偏差产生顺向扰动的串级过程。,誊烛耶木馅访绅弓哉贼演疗豌蛙赘踢眨圾令慕喜构找割奏贵竖娄分蛋框家第5章 扰动模型第5章 扰动模型,方法四:用预报削减扰动的影
6、响,用预报削减扰动的方法是前馈原理的推广。当扰动不能实测时,就可以用此方法。其原理为: 用可测信号预报扰动,再由此预报产生前馈信号。重要的是:预报扰动本本身不是必须的,能模拟出代表扰动对重要的过程变量的影响的信号就足够了。,瞬香肖呆生或谤甸晴五嗜祟防榆蛆挡瞳具傍阀验押屋白焦戊册焙命奈锻笺第5章 扰动模型第5章 扰动模型,5.2 扰动的模型经典扰动模型 分段确定性扰动 其他扰动,些傣翘屋柒吁乔舱季豢防处博钉棱悦颅逻墨最锚姑挟栓扎讹服南爪严诲蛤第5章 扰动模型第5章 扰动模型,习惯上,把不同类型的扰动区分为: 负载扰动,测量误差和参数变化。负载扰动 负载扰动 影响过程的变量,是典型缓慢变化的量,可
7、以是周期性的。 典型例子: 力学系统:稳定天线上的阵风,船的波浪,电动机的负载; 过程控制:供给流涕的质量偏差,指令流量的偏差; 热力学系统:环境温度的变化。,咬告饵汞仲圃扑怀铺誓磕董棒帚垃辛层营罐差戍埂冯厄塑婪杂劳鸳突仔宛第5章 扰动模型第5章 扰动模型,测量误差 测量误差要进入传感器中。在某些传感器中,可能由于校准而由定态误差,典型的测量误差具有高频成分,由于传感器的动力学特性还可能由动态误差,在传感器和过程之间还可能存在复杂的动态相互作用。典型的例子就是陀螺测量和核反应堆中液位的测量。参数变化 使用着线性理论,再附加负载扰动和测量噪声。不过,实际系统常常是非线性的。把非线性的模型线性化得
8、到线性模型,这意味着各种扰动可以更复杂的方式加入,于是,某些扰动还可以当作模型参数的偏差。,系蔑撇著筐趟懂盏酮瓣套裂蝗矾躁循改庚季夹氏薛邀艰笛捧您荡宵怒组摆第5章 扰动模型第5章 扰动模型,经典扰动模型,这些经典的扰动模型对于分析扰动对系统的影响是有用的,可以用这些模型研究局部反馈和前馈可能得到改进,不适合用预报削减扰动的情况。脉冲阶跃斜坡正弦,图 简单的扰动模型,涎了峙背忌穴崇壶咯赐浓诽塞颂幌氰勇羌朔囱渣喷渡慷硝闯如姐箭玄讨皂第5章 扰动模型第5章 扰动模型,冲击和脉冲 冲击和脉冲是短时突变扰动的简单抽象。它们可以代表负载扰动以及测量误差,对于连续系统,这种扰动是一种冲击(函数);在采用系统
9、中,把这种扰动模型化为幅值为1,持续时间为一个采用周期的脉冲。阶跃 阶跃信号是扰动的另一种模式。它常用以代表负载扰动或者是测量偏差。斜坡 斜坡函数时间为负时,它为零;时间为正时,它线性的增加。它可以表示漂移的测量误差和突然开始漂移的扰动。正弦 正弦周期性扰动的模型。适当选择频率可以表示低频负载扰动以及高频的测量噪声。,白归怔匀闲吹湍丝瓷扒锅雀埂咐尾酿枚备逃殉拳础痒闷坏爸县鲸筑坯妥哨第5章 扰动模型第5章 扰动模型,分段确定性扰动,为了形式化一个切合实际的预报问题,需要不同的模型。构造能合理地表达预报问题地扰动模型是非常重要的。,例子一:阶跃信号的预报器,坠绦绞戎穷蝎眼揽澎痹儿蝉尹讳镑拢孟罢伏拆
10、忍坐瞎估浅盔弄娄割陕掉培第5章 扰动模型第5章 扰动模型,例子二:斜坡信号的预报器,上述例子表明,除了少数几点之外预报误差总是为零。这个观察结果与扰动难以预报的实际经验不完全符合。这表明:阶跃和斜坡信号不是解决预报问题的合理模型。解析的信号是无用的,因为解析函数由它在任意短时间间隔内的值是唯一给定的。阶跃和斜坡除了原点外处处解析。,娟闪锐抵痛这支促帖淀叛呐柄侥戒体越取撒啼差房剁朝踏刹湾叼桓歼溺梗第5章 扰动模型第5章 扰动模型,假定脉冲出现的时刻事前未知,脉冲的幅值也是未知的,这种信号称为分段确定性信号。除了孤立点(给定集合,孤立点就是存在它的一个临域,在这个临域内除了它之外没有属于集合的点
11、)外,该信号是确定的,但是孤立点的变化是不可预报的。例子:,图 m3时,分段恒定信号和分段线性信号以及它们m步预报,牡线芦组谷豌急够也驶惭装惰棠圈房潜轩秩速差站浊莫阿欣锄正冠拟抠副第5章 扰动模型第5章 扰动模型,状态空间模型,让信号由动态系统:,产生。假设系统输出y是标量且是完全能观测的。假定除了在孤立点外输入v(k)都为零。如果系统状态已知,那么就可直接预报输入为零的任何时间间隔上的状态。然而,当有脉冲时,状态可能以任意方式变化,但在一个脉冲之后将总有一个输入为零的时间间隔。由于系统时能观测的,于是,可以计算出过程状态。这样,直到一个新的脉冲出现之前,都可以获得准确的预报。,溉弹炯际忙父七
12、蜂观咀候管革搪轧柑乳匙寄湾搪眩外勒领妈观月废找躯判第5章 扰动模型第5章 扰动模型,根据能观测性的条件的推导,可以获得状态为:,其中,Wo是系统的能观测性矩阵。下述预报器给出前m步的状态:,于是,由n个实测信号值的线性组合就得到信号的预报器。该预报器 可以表示为:,其中,P是(n1)次多项式。,预报器模型I,谚伸勤莉榆吁贝砸喇元潘羹益宽链垫芽符糙钻控亿停烬乔词鄙啄跑震肛泪第5章 扰动模型第5章 扰动模型,预报器模型II,还可用递推方程表示:,表示预报器,其中矩阵K的选择要使得矩阵(I-KC)的所有的特征值为零。,卯测谤领丢跳琴猴榔袱斥膛娟朗十褥恫促折州志基踏轩楷另灸请拎椒泞耽第5章 扰动模型第
13、5章 扰动模型,随机过程的扰动模型,1 概念,随机过程有限维分布函数一个随机过程在n个不同时刻的值是n维随机变量。把函数:,式中,P表示概率。 如果所有有限维分布是正态的,则就称随机过程是高斯的,或者是正态的。,闽闻幂雨磷酬黎示滞苍剃岭抢逗讳殆逗另簧骆罐倦混距挨沪重笺命席泌腻第5章 扰动模型第5章 扰动模型,随机过程x的均值函数定义为:,随机过程的协方差函数定义为:,两个随机过程的互协方差函数定义为:,颅犬捡庇熬鸡儡秒窒悍力自皱骄山痕缔桨返蒋版陛环火摸伏竞黄担坟配凿第5章 扰动模型第5章 扰动模型,随机过程是平稳的的定义为:,如果对于所有的,n,t1tn,x(t1) x(tn)的有限维分布等于
14、x(t1),x(t2) x(tn) 的有限维分布,则称此随机过程是平稳的。,随机过程是弱平稳的的定义为:,如果对于所有的,只要分布的前两个矩相同,则称此随机过程是弱平稳的。,(弱)平稳过程的互频谱密度是其互协方差函数的傅立叶变换:,互谱密度函数,册澡豢孺氮光傲诲镣衍椿后绝隘辫然芽琴接飘克迅必眷退顶雍乳坤棵际伺第5章 扰动模型第5章 扰动模型,线性随机差分方程,如果过程模型由连续时间微分方程表示,采样得到的方程为离散时间随机模型。,连续时间过程微分方程为:,其中 是向量,其元素是白噪声随机过程,由于其具有无穷大方 差,习惯上把上述微分方程写成:,随机微分方程,假设信号v具有零均值,不相关增量和方
15、差为:,(4),皿做烯剃寐绢干怠隋赤炯窃诽拒树河妆棠洱俘等旋开恋什喊族俺际峡台粗第5章 扰动模型第5章 扰动模型,令采样瞬时为tk: k=0,1,在一个采样周期内对(4)积分,得:,考虑随机变量:,因为v的均值为零,所以,这个变量的均值也为零。因为在整个不交叉的时间间隔上v的增量是不相关的。故,对于k1的随机变量v(tk)和v(t0)也是不相关的。 v(tk)的协方差为:,(5),愁绚惕砚奴气秘锭爱资湿哦兑冲格亥级诱浩聂菊若抚算恒蛔侈轧毁冶双冕第5章 扰动模型第5章 扰动模型,由采样过程x(t)而得到的随机序列x(tk): k=0,1可由差分方程,描述。其中v(tk): k=0,1是均值为零和
16、协方差为式(5)的不相关的 随机变量序列。,蚁珊速宪嫂穿罗蔼衙孪漆州荐贿帕阜缠变辽班赃铡蓬嫩氰浇漱当琵蛛辑郴第5章 扰动模型第5章 扰动模型,线性随机差分方程定义为:,考虑把采样周期选作时间单位的离散时间系统。 假设时刻k的状态x(k)给出,那么,在时刻k1的状态的概率分布就是x(k)的函数。 如果x(k)的均值是线性的且围绕均值的分布与x(k)独立,那么, x(k1)可以表示为:,其中,v(k)是一个均值为零,协方差为R1的随机变量,它与x(k)独立并且与x所有的过去值独立。这意味着v(k)还与其所有过去值独立。 序列 v(k),k,1,0,1是个独立同分布随机变量序列,于是随机过程v(k)
17、是离散时间白噪声。,线性随机差分方程,为了完全定义随机过程v(k),需要规定其初始条件,假定其初始状态均值为m0,协方差矩阵为R0,鸣毅吴旷蔗罐拢验频霖戎孔填芳挡漾问为袜堡补荡柄寂粉歇蔼霄呕佐莫捂第5章 扰动模型第5章 扰动模型,研究线性随机差分方程定义的随机过程的特性,并且计算出该过程的一阶矩和二阶矩。,线性随机差分方程的特性,对线性随机差分方程两边取均值,可以得到下面的差分方程:,初始条件为:,这样,该均值将以无扰系统的同样方式传播。,特性一:均值函数,鸭英烘濒杜帕敛盆撵囱挎辙蜀铺双您门惧布此泅咱剖侣投楞案将痉厩氛抚第5章 扰动模型第5章 扰动模型,特性二:协方差函数,为了计算协方差函数,
18、引入:,其中,,其满足具有初始条件的均值为零的线性随机差分方程。,因为:,v(k)和 (k)是独立的,对上式两边取均值,得到:,邑薛秧痰宿晕芯炒砍退祟指备绢珍氦笋吸乔啮拇傲津互弹剥需骏少白留稽第5章 扰动模型第5章 扰动模型,初始条件为:,P的递推方程表明协方差是怎样传播的。,为了计算状态协方差函数,观察:,v(k)和 (k)是独立的,并且v(k)均值为零,得到:,重复上述步骤,得到:,于是通过一个具有用给定的动态系统传播方差函数变得到协方差函数。,矿销片三暑瘴匈员挚碎斯根勉健岿螺豫痔沉芒扭件氧梗损涩秆画署吗馅擎第5章 扰动模型第5章 扰动模型,小结:离散的白噪声随机过程,考虑线性随机差分方程
19、定义的随机过程。其中,v(k)是一个均值为零,协方差为R1的白噪声过程。令其初始状态均值为m0,协方差矩阵为R0,于是此过程的均值函数为:,其协方差函数为:,其中:,由:,给出。,(1),(2),(3),炯歧伤弛堰皋盏簇戮荚悸疗晤蟹逸郭仑捎较糠危挥卉肥汪客互痢野钻绅筒第5章 扰动模型第5章 扰动模型,注一:如果随机变量是高斯分布的,那么,此随机过程惟一的由其均值函数m和且协方差函数r表征。,注二:如果系统有输出yCx,那么,由myCm给出y的均值函数,并且,由于:ryy CrxxCT给出y的协方差。,注三:式(3)中各项都由物理解释。协方差P可以表示状态的不确定性,P(k)T此项表明由于系统动力学特性在时刻k的不确定性是怎样传播的,而R1项描述扰动v引起的不确定性的增加。,阑妨侵蝴渊匣蝉钞陕宁洪善盾税恼泅华储琉爷缮诺函整诧讣芥辙呻氟萤撩第5章 扰动模型第5章 扰动模型,