ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:35.50KB ,
资源ID:7892902      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-7892902.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(抽屉原理奥数例题.doc)为本站会员(yjrm16270)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

抽屉原理奥数例题.doc

1、奥 赛 专 题 - 抽 屉 原 理专题介绍 把 4 只苹果放到 3 个抽屉里去,共有 4 种放法(请小朋友们自己列举),不论如何放,必有一个抽屉里至少放进两个苹果。同样,把 5 只苹果放到 4 个抽屉里去,必有一个抽屉里至少放进两个苹果。更进一步,我们能够得出这样的结论:把 n1 只苹果放到 n 个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。经典例题【例 1】一个小组共有 1

2、3 名同学,其中至少有 2 名同学同一个月过生日。为什么?【分析】每年里共有 12 个月,任何一个人的生日,一定在其中的某一个月。如果把这12 个月看成 12 个“抽屉”,把 13 名同学的生日看成 13 只“苹果”,把 13 只苹果放进 12个抽屉里,一定有一个抽屉里至少放 2 个苹果,也就是说,至少有 2 名同学在同一个月过生日。 【例 2】任意 4 个自然数,其中至少有两个数的差是 3 的倍数。这是为什么?【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以 3 的余数相同,那么这两个自然数的差是 3 的倍数。而任何一个自然数被 3 除的余数,或者是 0,或者是 1,或者是 2,根

3、据这三种情况,可以把自然数分成 3 类,这 3 种类型就是我们要制造的 3 个“抽屉”。我们把 4 个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有 2 个数。换句话说,4 个自然数分成 3 类,至少有两个是同一类。既然是同一类,那么这两个数被3 除的余数就一定相同。所以,任意 4 个自然数,至少有 2 个自然数的差是 3 的倍数。想一想,例 2 中 4 改为 7,3 改为 6,结论成立吗?【例 3】有规格尺寸相同的 5 种颜色的袜子各 15 只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有 3 双袜子(袜子无左、右之分)?【分析与解】试想一下,从箱中取出 6 只、9 只袜子

4、,能配成 3 双袜子吗?回答是否定的。按 5 种颜色制作 5 个抽屉,根据抽屉原理 1,只要取出 6 只袜子就总有一只抽屉里装2 只,这 2 只就可配成一双。拿走这一双,尚剩 4 只,如果再补进 2 只又成 6 只,再根据抽屉原理 1,又可配成一双拿走。如果再补进 2 只,又可取得第 3 双。所以,至少要取622=10 只袜子,就一定会配成 3 双。思考:1.能用抽屉原理 2,直接得到结果吗?2.把题中的要求改为 3 双不同色袜子,至少应取出多少只?3.把题中的要求改为 3 双同色袜子,又如何?【例 4】一个布袋中有 35 个同样大小的木球,其中白、黄、红三种颜色球各有 10 个,另外还有 3

5、 个蓝色球、2 个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有 4 个是同一颜色的球?【分析与解】从最“不利”的取出情况入手。最不利的情况是首先取出的 5 个球中,有 3 个是蓝色球、2 个绿色球。接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过 4 个,所以,根据抽屉原理 2,只要取出的球数多于(4-1)3=9 个,即至少应取出 10 个球,就可以保证取出的球至少有 4 个是同一抽屉(同一颜色)里的球。故总共至少应取出 105=15 个球,才能符合要求。思考:把题中要求改为 4 个不同色,或者是两两同色,情形又如何?当我们遇到“判别具有某种事物的性质有没有,至少

6、有几个”这样的问题时,想到它抽屉原理,这是你的一条“决胜”之路。提示抽屉原理还可以反过来理解:假如把 n1 个苹果放到 n 个抽屉里,放 2 个或 2 个以上苹果的抽屉一个也没有(与“必有一个抽屉放 2 个或 2 个以上的苹果”相反),那么,每个抽屉最多只放 1 个苹果,n 个抽屉最多有 n 个苹果,与“n+1 个苹果”的条件矛盾。运用抽屉原理的关键是“制造抽屉”。通常,可采用把 n 个“苹果”进行合理分类的方法来制造抽屉。比如,若干个同学可按出生的月份不同分为 12 类,自然数可按被 3 除所得余数分为 3 类等等。【例 4】证明任意 11 个自然数,总能从中找到 2 个,使得它们之差是 1

7、0 的倍数。这里可以把 11 个数除以 10 的余数当做 苹果,总共 11 个余数。 而任何自然数除以 10 的余数可能是:0,1,2,3,.9 这 10 个数,把这 10 个余数当做抽屉。前面具体的 11 个余数放入后面这 10 个抽屉里,至少有一个抽屉里有=2 个数,表明肯定能从 11 个数中选出 2 个,使得他们除以 10 有相同的余数,于是这两个数之差就是 10 的倍数了。证毕。【例 5】一个小组共有 13 名同学,其中至少有 2 名同学同一个月过生日。为什么?【分析】每年里共有 12 个月,任何一个人的生日,一定在其中的某一个月。如果把这 12个月看成 12 个“抽屉” ,把 13

8、名同学的生日看成 13 只“ 苹果 ”,把 13 只苹果放进 12 个抽屉里,一定有一个抽屉里至少放 2 个苹果,也就是说,至少有 2 名同学在同一个月过生日。【例 6】任意 4 个自然数,其中至少有两个数的差是 3 的倍数。这是为什么?【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以 3 的余数相同,那么这两个自然数的差是 3 的倍数。而任何一个自然数被 3 除的余数,或者是 0,或者是 1,或者是 2,根据这三种情况,可以把自然数分成 3 类,这 3种类型就是我们要制造的 3 个“抽屉”。我们把 4 个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有 2 个数。换句话说,4

9、个自然数分成 3 类,至少有两个是同一类。既然是同一类,那么这两个数被 3 除的余数就一定相同。所以,任意 4 个自然数,至少有 2 个自然数的差是 3 的倍数。【例 7】有规格尺寸相同的 5 种颜色的袜子各 15 只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有 3 双袜子(袜子无左、右之分)?【例 8】有红 ,黄,白三种颜色的小球各 10 个,每个人从中任意选择两个,那么至少需要几个人选择小球,才能保证必有两人或两人以上选择的小球的颜色完全相同 ?解:4+3=7【例 9】用红、蓝两种颜色将一个 25 方格图中的小方格随意涂色(见右图),每个小方格涂一种颜色。是否存在两列,它们的小方格中涂的颜色完全相同?分析与解:用红、蓝两种颜色给每列中两个小方格随意涂色,只有下面四种情形:将上面的四种情形看成四个“抽屉”。根据抽屉原理,将五列放入四个抽屉,至少有一个抽屉中有不少于两列,这两列的小方格中涂的颜色完全相同。

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报