ImageVerifierCode 换一换
格式:PPT , 页数:26 ,大小:1.31MB ,
资源ID:7102275      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-7102275.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第三节 函数的极限.ppt)为本站会员(ysd1539)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

第三节 函数的极限.ppt

1、第三节 函数的极限,第一章,一、自变量趋于无穷大时函数的极限,自变量变化过程的六种形式:,二、自变量趋于有限值时函数的极限,本节内容 :,由于数列实际上可以看成是定义域为正整数域的函数,所以,可望将数列的极限理论推广到函数中, 并用极限理论研究函数的变化情形.,的图形可以看出:,如何描述它?,定义1 . 设函数,大于某一正数时有定义,若,则称常数,时的极限,几何解释:,记作,直线 y = A 为曲线,的水平渐近线.,A 为函数,直线 y = A 仍是曲线 y = f (x) 的渐近线 .,两种特殊情况 :,当,时, 有,当,时, 有,几何意义:,例如,,都有水平渐近线,都有水平渐近线,又如,,

2、注:,二. 自变量趋于有限值时函数的极限,1.,时函数极限的定义,引例. 测量正方形面积.,面积为A ),边长为,(真值:,边长,面积,直接观测值,间接观测值,任给精度 ,要求,确定直接观测值精度 :,定义1 . 设函数,在点,的某去心邻域内有定义 ,当,时, 有,则称常数 A 为函数,当,时的极限,或,即,当,时, 有,若,记作,几何解释:,极限存在,函数局部有界,(P36定理2),这表明:,例1. 证明,证:,故,对任意的,当,时 ,因此,总有,例2. 证明,证:,故,取,当,时 , 必有,因此,例4. 证明: 当,证:,欲使,且,而,可用,因此,只要,时,故取,则当,时,保证 .,必有,

3、2. 左极限与右极限,左极限 :,当,时, 有,右极限 :,当,时, 有,定理 3,( P38 题8 ),例5. 设函数,讨论,时,的极限是否存在 .,解: 利用定理 3 .,因为,显然,所以,不存在 .,三. 函数极限的性质,定理1(唯一性) 如果函数f(x)在某个极限过程中,极限存在,那么这极限唯一。,定理2 (局部有界性)如果,那么存在,常数,M 0,和,使得当,时,有,1、唯一性和有界性,2. 保号性定理,定理1 . 若,且 A 0 ,证: 已知,即,当,时, 有,当 A 0 时,取正数,则在对应的邻域,上,( 0),则存在,( A 0 ),(P37定理3),若取,则在对应的邻域,上,

4、若,则存在,使当,时, 有,推论:,(P37 推论),分析:,定理 2 . 若在,的某去心邻域内, 且,则,证: 用反证法.,则由定理 1,的某去心邻域 ,使在该邻域内,与已知,所以假设不真,(同样可证,的情形),思考: 若定理 2 中的条件改为,是否必有,不能!,存在,如,假设 A 0 ,条件矛盾,故,四. 函数极限与数列极限的关系,1. 函数极限与数列极限的关系,定理3.,有定义,为确定起见 , 仅讨论,的情形.,有,定理3.,有定义,且,设,即,当,有,有定义 , 且,对上述 ,时, 有,于是当,时,故,可用反证法证明. (略),有,证:,当,定理3.,有定义,且,有,说明: 此定理常用于判断函数极限不存在 .,法1 找一个数列,不存在 .,法2 找两个趋于,的不同数列,及,使,例1. 证明,不存在 .,证: 取两个趋于 0 的数列,及,有,由定理 1 知,不存在 .,内容小结,1. 函数极限的,或,定义及应用,2. 函数极限的性质:,保号性定理,与左右极限等价定理,思考与练习,1. 若极限,存在,2. 设函数,且,存在, 则,例3,Th1,Th3,Th2,是否一定有,?,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报