ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:49KB ,
资源ID:5931524      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5931524.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(最小的余数是1还是0.doc)为本站会员(HR专家)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

最小的余数是1还是0.doc

1、 最小的余数是 1 还是 0?最小的余数是 1 还是 0?这个问题你选择哪个答案?当除数是 6,余数可以是几?你是填 0-5,还是 1-5?这都涉及余数可不可以是 0 的问题。九义教材中余数是 0 被认为是没有余数,1 被认为是最小的余数。但实验教材有不同的理解。下面的文章我觉得在所有的参考资料中说得是比较清楚明白的,推荐给同仁们参考。【转】浅谈在整数除法中余数可以为零一、 困扰教师的问题 不少小学数学教师问过我这样一个问题:“在整数除法中,余数可不可以为 0?”这个问题早有定论,于是我不假思索地肯定作答:“余数当然可以为 0。”不料对于这一答案,他们并不同意,其理由如下: 第一,人教版义务教

2、育课程标准实验教科书数学,从一年级上册到六年级下册,里面均无“余数可以为 0”的表述。 第二,现代汉语词典(修订本)(商务印书馆, 1996 年 )第 1553 页对“余数”一词的解释为:“整数除法中,被除数未被除数整除所剩的大于 0 而小于除数的部分。如 276=43。即不完全商是 4,余数是 3。”这就表明余数不能为 0。 在数学课本中找不到“余数可以为 0” 的论述,而在词典中却找到了“余数不能为0”的证据,难怪让他们对我的答案持怀疑态度。面对这样一个困扰小学数学界同仁的问题,该怎样来正本清源呢? 我仔细地查阅了人教版全套小学数学课本,确实没找到“余数可以为 0”的表述,只在三年级下册第

3、 26 页练习六第 3 题的指令性语言中,发现了三处“余数为 0”的表述。我知道,这样的表述既不是出现在正文中,又没有说明道理,不足以成为论据。课本中没有,看来只有通过合理思辨和相关考证来达到为小学同仁解惑之目的了。 二、解惑所需的思辨 1.要用对立统一的观点看待 0 众所周知,当盘子中连一个桃子都没有时,我们就说这盘中桃子的个数为 0。从这个意义上讲,0 是空集的基数,0 表示“没有”。然而,0 又是一个确定的数,它是自然数列的起始数,它既不是正数,也不是负数,它是唯一的中性数。从这个意义上讲,0 又表示“有”。这一点不难理解。比方说,小明在黑板上写了一个“0”,你总不能说他什么都没写吧!再

4、比方说,某地某时的气温为 0 摄氏度,你总不能说该地该时没有温度吧!所以,我们应该用对立统一的辩证观点看待 0,懂得 0 既可表示“无”,又可表示“有”。用这一观点考察整数除法,我们不难发现,当 155 时,得到整数商 3,既可以说“没有余数”,也可以说“余数为 0”,这两种说法是完全等价的,因而都是正确的。 2.要用发展变化的观点看待概念间的关系 人们对数学概念的认识并非一成不变的,而是处于不断发展变化之中的。例如,“整数”与“分数”最初是两个并列的概念,它们相互排斥,泾渭分明,不容混淆。然而,出于数学自身发展的需要,后来,人们又把整数看做是分母为 1,分子为该整数的假分数,如 3=3/1,

5、65=65/1。这样一来,“分数”的外延就扩大了,“整数”与“分数”的关系也由并列关系转变为包含关系。“整数”成了“分数”的特例,整数集成了分数集的真子集。原先,整数集与分数集之并集才是有理数集,后来,这种广义的分数集实际上就是有理数集了。 与此类似,人们研究整数除法时,先研究被除数能被除数整除的情形,如 155,正好得到整数商 3,记作 155=3。后来才研究有余数的情形,如 165,得到不完全商 3 后还余 1,记作 165=31。起初,“整除”与“有余数的除法”也是并列而互斥的概念,前者没有余数,后者有余数,互不相容。后来,为了研究的方便,人们干脆把“有余数的除法”的外延扩大,让它把原先

6、的两个概念一并囊括。因为这很容易办到:只要把“整除”时的“没有余数”看做“余数为 0”即可。这样一来,“整除”就成了“有余数的除法”的特例,“整除”与“有余数的除法”也就顺理成章地由对立变成统一,二者统一于广义的“有余数的除法”之中。 3.“余数为 0”的说法有据可查 事实上,“余数为 0”的提法早已被数学界认可。 小学数学教师手册(人民教育出版社,1982 年)第 49 页有如下表述: “判定一个整数能不能被另一个正整数整除,只需进行除法运算即可。如果所得的余数为 0,就是整除的情况;如果所得的余数不为 0,就是不能整除的情况。例如: a=91,b=13。ab=9113,商 7 余 0。这表

7、明 91=137。即 91 能被 13 整除。 a=97,b=19。9719 商 5 余 2。所以 97 不能被 19 整除。 一般地,对于整数 a 和正整数 b,如果进行除法 ab 得商 q,余数为 r,就有 a=bq+r。其中 0r数学手册(人民教育出版社,1979 年)第 1057 页“数论”的“辗转相除法”中,有如下表述: “每一个整数 a 可以唯一地通过正整数 b 表示为 a=bq+r, 0r上述不等式 0r值得注意的是,“辗转相除法”又称“欧几里得算法”,我国宋代数学家秦九韶早在公元 1247 年即在其著作数书九章中,对这一算法进行过卓有成效的研究。 数学手册(人民教育出版社,19

8、79 年)第 1066 页“数论”的“同余式”中,有如下表述:“设以 m 为模,则可将全体整数分为 m 个类,同类的数都同余,不同类的数都不同余,称这样的类为同余类,每类中各取一数为代表,例如:0,1,2,m-1 构成一个完全剩余类。” 由此易知,在以 0 为代表的这个剩余类中,每个数除以 m,所得的余数均为 0。也就是说,此类数中的每一个都是 m 的倍数。 事实上,我们不仅从剩余类的理论中,看到了对“余数为 0”的认可,还可以运用剩余类的理论和“抽屉原理”来解答一类有关整除性的题目。载有这类题目并给出解答的数学书籍比比皆是,下面举一例。 求证:在任意四个整数中,必有这样的两个数,它们的差能被

9、 3 整除。 证明:因为任何整数除以 3,所得余数只可能是 0,1,2 三种。也就是说,所有整数按其除以 3 所得余数来分,可分为余数分别为 0,1,2 的三个剩余类。把每个剩余类都看做一个抽屉,三个剩余类就是三个抽屉。根据“抽屉原理”,把四个整数放进三个抽屉,至少有一个抽屉里会有两个整数。这两个整数既属同一个剩余类,它们除以 3 所得的余数必然相同,故其差除以 3 所得的余数必为 0,也就是说,这个差必能被 3 整除。 三、教材修改的建议 综上所述,在整数除法中,余数的确是可以为 0 的。但在现行的人教版小学数学教材中,对此却完全不予涉及,遂令在教学中起主导作用的教师迷茫不解,实在没有道理。

10、由此观之,教材必须修改。 1.教材修改的重要意义 有利于学生认识 0 的双重意义,知道 0 既可表示“无”,又可表示“有”。使用修改后的教材教学,能让学生初步感知对立统一的辩证思想。 有利于学生用发展变化的辩证唯物主义观点认识概念间的关系,知道当学习了“有余数的除法”后,原来的“整除”(包括“表内除法”)可以看做是“有余数的除法”的特例,由此理解“特殊”与“一般”的关系。 有利于学生后续的数学学习。 2.教材修改的具体意见 要明确指出“没有余数”就是“余数为 0”。 人教版小学数学三年级上册第四单元“有余数的除法”第 50 页例题 1 为:“搬 15盆花布置会场,每组摆 5 盆,可以摆几组?”

11、解答此题的横式为 155=3(组)。接着,课本上还列出了竖式。 这道例题显然起着承上启下的作用:既承接二年级下册的“表内除法”,又由此介绍除法竖式,为“有余数的除法”的教学作铺垫。 第 51 页例题 2 是:“一共有 23 盆花,每组摆 5 盆,最多可以摆 4 组,还多 3 盆。”这是“有余数的除法”的首个例题。解答时,课本上先列出横式: 235=4(组)3(盆)。 再在横式下方列出竖式,并用虚线将两个式子中的 3 连接,标上“余数”二字。 课本上述编排颇具匠心,但还应作点补充。建议在这两道例题后面,不失时机地编排一段对“0”的辩证认识的文字,让学生懂得:“0”虽然表示“没有”,但它同时又是一

12、个确定的数,从这个意义上讲,“0”也表示“有”。紧接着,还要引导学生对这两道例题的竖式进行观察和比较,发现例题 1 竖式中最下面的“0”与例题 2 竖式最下面的“3”处于相同的位置,“3”既表示余数,“0”也可看成是余数。过去我们说 155 恰好等于3,“没有余数”,现在我们也可说 155,商为 3,“余数为 0”。 相信这样处理,学生能在轻松愉快中接受辩证唯物主义思想的启蒙教育。 要明确指出除数为 a 时,共有 a 种不同的余数:0,1,2,a-1。 三年级上册第 52 页例题 3 为:“如果上例中一共有 16 盆花,可以摆几组?多几盆?如果是 17 盆,18 盆,24 盆,25 盆呢?”

13、课本上列出了一组式子: 155=3(组) 165=3(组)1(盆) 175=3(组)2(盆) 185=3(组)3(盆) 195=3(组)4(盆) 205=(组) 215= (组)(盆) 225= (组)(盆) 235= 245= 255= 在这组式子的右边,提了一个问题:“观察余数和除数,你发现了什么?”旨在引导学生发现“余数小于除数”的结论。 此题编得不错,无须大改。关键是要增加一段文字,要告诉学生:“155=3(组)”也可写作“155=3(组)0(盆)”。这样,展现在学生面前的余数就有 0,1,2,3,4 五种,就不会由于余数 0 的隐匿,而使学生误认为“一个整数除以 5,只有 1,2,3

14、,4 四种余数”了。 到四年级学习了“用字母表示数”后,课本还应当用更具概括性的语言告诉学生:在整数除法中,如果除数是 a,则余数只能是 0,1,2,a-1,一共有 a 种。 当今时代,数学不仅作为工具,发挥着越来越重要的作用,而且,数学作为一种文化,也日益深入人心。近年来,人们对 0 的双重意义的认识越来越到位了。这不,没有距离被称作“零距离”;不收关税被称作“零关税”。把没有误差称作“零误差”;把没有风险称为“零风险”。而像“零增长” “零收益” “零亏损” “零排放” “零损耗” “零学费” “零片酬”“零首付”“零月租”“零利息”之类的提法早已见诸各媒体。随着时间的推移,像这类以“零”

15、为模式的词汇还在不断地诞生。前些时候,美国国务卿希拉里克林顿由于不满下属的荒唐行为,还首创了“零忍耐”一词,令人颇感新鲜。 “0”本是数学中的元素,在数学的整数除法中,又实实在在地存在着余数为 0 的现象,而为什么在我们的小学数学教科书上,反倒连一个“零余数”都不敢提呢?这真是:墙外百花齐放,墙内掖掖藏藏。令人不解其意,空自扼腕嗟伤! 教科书是师生进行教学活动的重要资源和主要依据,该说清的一定要说清,该指明的一定要指明。一切都要为学生的发展着想。千万别把一些该让孩子们知道的数学知识“坚壁清野”,而且还藏得那么干净彻底,藏得那么了无痕迹,让教师都困扰莫名。试想,如果教科书都让教师 “找不到北”了,那么我们的孩子又能聪明到哪里去呢?

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报