ImageVerifierCode 换一换
格式:PPT , 页数:42 ,大小:2.28MB ,
资源ID:5743240      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5743240.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((全国优秀)椭圆.ppt)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

(全国优秀)椭圆.ppt

1、2.1.1椭圆及其标准方程,如何精确地设计、制作、建造出现实生活中这些椭圆形的物件呢?,生活中的椭圆,仙女座星系,星系中的椭圆,“传说中的”飞碟, 动画演示:太阳系行星的运动,思考,数学实验,(1)取一条细绳, (2)把它的两端固定在板上的两个定点F1、F2 (3)用铅笔尖(M)把细绳拉紧,在板上慢慢移动看看画出的 图形,1.在椭圆形成的过程中,细绳的两端的位置是固定的还是运动的? 2.在画椭圆的过程中,绳子的长度变了没有?说明了什么? 3.在画椭圆的过程中,绳子长度与两定点距离大小有怎样的关系?,请你归纳出椭圆的定义,它应该包含几个要素?,(1)由于绳长固定,所以点M到两个定点的距离和是个定

2、值,(2)点M到两个定点的距离和要大 于两个定点之间的距离,(一)椭圆的定义,平面内到两个定点F1,F2的距离之和等于常数 (2a) (大于|F1F2 |)的点的轨迹叫椭圆。 定点F1、F2叫做椭圆的焦点。 两焦点之间的距离叫做焦距(2C)。,椭圆定义的文字表述:,椭圆定义的符号表述:,(2a2c),M,F2,F1,小结:椭圆的定义需要注意以下几点,1.平面上-这是大前提 2.动点M到两定点F1,F2的距离之和是常数2a 3.常数2a要大于焦距2C,思考:,1.当2a2c时,轨迹是( ),椭圆,2.当2a=2c时,轨迹是一条线段, 是以F1、F2为端 点的线段 3.当2a2c时,无轨迹,图形不

3、存在. 4.当c=0时,轨迹为圆,O,r,设圆上任意一点P(x,y),以圆心O为原点,建立直角坐标系,两边平方,得, 回忆在必修2中是如何求圆的方程的?,求曲线方程的方法步骤是什么?,建立适当的直角坐标系;,设M(x,y)是曲线上任意一点;,由限制条件,列出几何 等 式,写出适合条件P的点M的集合P=M|P(M),用坐标法表示条件P(M),列出方程f(x,y)=0,化简方程f(x,y)=0., 探讨建立平面直角坐标系的方案,建立平面直角坐标系通常遵循的原则:对称、“简洁”,方案一,解:取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系(如图).,设M(x, y)

4、是椭圆上任意一 点,椭圆的焦距2c(c0),M 与F1和F2的距离的和等于正 常数2a (2a2c) ,则F1、F2的坐标分别是(c,0)、(c,0) .,(问题:下面怎样化简?),由椭圆的定义得,限制条件:,代入坐标,2.椭圆的标准方程的推导,两边除以 得,由椭圆定义可知,总体印象:对称、简洁,“像”直线方程的截距式,焦点在y轴:,焦点在x轴:,椭圆的标准方程,图 形,方 程,焦 点,F(c,0),F(0,c),a,b,c之间的关系,c2=a2-b2,MF1+MF2=2a (2a2c0),定 义,两类标准方程的对照表,注:,共同点:椭圆的标准方程表示的一定是焦点在坐标轴上,中心在坐标原点的椭

5、圆;方程的左边是平方和,右边是1.,不同点:焦点在x轴的椭圆 项分母较大.焦点在y轴的椭圆 项分母较大.,练习1:判定下列椭圆的焦点在哪个轴,并指 明a2、b2,写出焦点坐标,答:在 X 轴(-3,0)和(3,0),答:在 y 轴(0,-5)和(0,5),答:在y 轴。(0,-1)和(0,1),判断椭圆标准方程的焦点在哪个轴上的准则:焦点在分母大的那个轴上。,1.口答:下列方程哪些表示椭圆?,若是,则判定其焦点在何轴? 并指明 ,写出焦点坐标.,?,练习:,0b9,练习:,a3,练习: 1.方程4x2+ky2=1的曲线是焦点在y轴上的椭圆,则k的范围是 . 2.椭圆mx2+ny2=-mn(mn

6、0)的焦点是 .,(0,4),3.已知方程 表示焦点在x轴 上的椭圆,则m的取值范围是 .,变式:已知方程 表示焦点在y轴上的椭圆,则m的取值范 围是 .,(0,4),(1,2),2、 已知椭圆的方程为: ,请填空: (1) a=_,b=_,c=_,焦点坐标为_,焦距等于_. (2)若C为椭圆上一点,F1、F2分别为椭圆的左、右焦点,并且CF1=2,则CF2=_.,变题: 若椭圆的方程为 ,试口答完成(1).,若方程表示椭圆呢?,5,4,3,6,(-3,0)、(3,0),8,例1、填空: (1)已知椭圆的方程为: ,则a=_,b=_,c=_,焦点坐标为:_焦距等于_;若CD为过左焦点F1的弦,

7、则F2CD的周长为_,例题,5,4,3,(3,0)、(-3,0),6,0,判断椭圆标准方程的焦点在哪个轴上的准则:焦点在分母大的那个轴上。,|CF1|+|CF2|=2a,练习,1 椭圆 上一点P到一个焦点的距离为5,则P到另一个焦点的距离为( ) A.5 B.6 C.4 D.10,A,2.已知椭圆的方程为 ,焦点在X轴上, 则其焦距为( ) A 2 B 2C 2 D 2,A,例2、写出适合下列条件的椭圆的标准方程,1,2,小结:先定位(焦点)再定量(a,b,c) 椭圆的焦点位置不能确定时,椭圆的标准方程一般有两种情形,必须分类求出,例1:平面内两个定点的距离是8,写出到这两个定点距离之和是10

8、的点的轨迹方程。,解:这个轨迹是一个椭圆。两个定点是焦点,用F1、F2表示,取过点F1、F2的直线为x轴,线段F1F2的垂直平分线为y 轴建立直角坐标系。 2a=10 2c=8 a=5 c=4 b2=a2c2=9, b=3,因此这个椭圆的标准方程是:,定义法求轨迹方程。,变题1:已知ABC的一边BC固定,长为8,周长为18,求顶点A的轨迹方程。,.,解:以BC的中点为原点,BC所在的直线为x轴建立直角坐标系。 根据椭圆的定义知所求轨迹方程是椭圆,且焦点在轴上,所以可设椭圆的标准方程为 :,y,o,B,C,A,x, 2a=10, 2c=8 a=5, c=4 b2=a2c2=5242=9 所求椭圆

9、的标准方程为:,例2、写出适合下列条件的椭圆的标准方程,(1) a =4,b=1,焦点在 x 轴上;(2) a =4,b=1,焦点在坐标轴上;(3) 两个焦点的坐标是( 0 ,-2)和( 0 ,2),并且经过点P( -1.5 ,2.5).,解: 因为椭圆的焦点在y轴上,设它的标准方程为, c=2,且 c2= a2 - b2, 4= a2 - b2 ,又椭圆经过点, ,联立可求得:,椭圆的标准方程为,(法一),或,(法二) 因为椭圆的焦点在y轴上,所以设它的 标准方程为,由椭圆的定义知,,所以所求椭圆的标准方程为,练习:求适合下列条件的椭圆的标准方程:,(2)焦点为F1(0,3),F2(0,3)

10、,且a=5.,答案:,(1)a= ,b=1,焦点在x轴上;,(3)两个焦点分别是F1(2,0)、F2(2,0),且过P(2,3)点;,(4)经过点P(2,0)和Q(0,3).,小结:求椭圆标准方程的步骤:,定位:确定焦点所在的坐标轴;,定量:求a, b的值.,例1 : 已知一个运油车上的贮油罐横截面的外轮廓线是一 个椭圆,它的焦距为2.4m,外轮廓线上的点到两个焦点距离的和为3m,求这个椭圆的标准方程,解:,以两焦点F1、F2所在直线为x轴,线段F1F2的垂直平分线为 y 轴,建立如图所示的直角坐标系xOy,则这个椭圆的标准 方程可设为,根据题意有,即,因此,这个椭圆的标准方程为,3. 例题,

11、回顾小结,求椭圆标准方程的方法,解:,例1 :将圆x2+y2 = 4上的点的横坐标保持不变, 纵坐标变为原来的一半,求所的曲线的方程, 并说明它是什么曲线?,设所的曲线上任一点的坐标为(x,y),圆 上的对应点的坐标为(x,y),由题意可得:,因为 ,所以,即,1)将圆按照某个方向均匀地压缩(拉长),可以得到椭圆。 2)利用中间变量求点的轨迹方程 的方法是解析几何中常用的方法;,练习,(1)到F1(-2,0)、F2(2,0)的距离之和为6的点的轨迹。,(2)到F1(0,-2)、F2(0,2)的距离之和为4的点的轨迹。,(3)到F1(-2,0)、F2(0,2)的距离之和为3的点的轨迹。,解 (1

12、)因|MF1|+|MF2|=6|F1F2|=4,故点M的轨迹为椭圆。,(2)因|MF1|+|MF2|=4=|F1F2|=4,故点M的轨迹不是椭圆(是线段F1F2)。,练习,例2 已知圆A:(x3)2y2100,圆A内一 定点B(3,0),圆P过B点且与圆A内切,求圆心 P的轨迹方程,解:设PBr 圆P与圆A内切,圆A的半径为10 两圆的圆心距PA10r, 即PAPB10(大于AB) 点P的轨迹是以A、B两点为焦点的椭圆 2a10, 2cAB6, a5,c3 b2a2c225916即点P的轨迹方程为 1,4、三角形ABC的三边a、b、c 成等差数列, A、C的坐标分别为(-1,0),(1,0), 求顶点B的轨迹。,8.在ABC中,BC=24,AC、AB边上的中线之和为39,求ABC的重心的轨迹方程,y,x,o,E,F,G,A,C,B,P,F1,F2,练习,已知F1、F2是椭圆 的焦点,P为椭圆上一点,且 ,则 的面积为_.,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报